Université de Toulouse III, FSI — Département de Mathématiques
Licence 2, module “Calcul scientifique”, 2019-2020

Projet: “Réalisation d’un petit moteur physique”
Février 2020

Les moteurs physiques servent a modéliser, en temps réel ou non, des interactions entre
des objets solides. Ils sont utilisés dans des domaines tres variés, qui vont des jeux vidéos a
la conception de pieces de machines. Le but de ce projet est d’'implémenter un petit moteur
physique interactif en Python.

1 Introduction

Les lois de Newton sont connues depuis plus de trois siécles et permettent de modéliser le
mouvement d’un corps connaissant les forces qui s’exercent sur lui. On s’intéresse au mouvement
d’une balle de masse m, repérée par la position z: R — R3 de son centre au cours du temps.

La seconde loi de Newton donne :
to_ 1 f(t) (1)
a2 m ’

ol f: R — R3 est la somme des forces s’exercant sur la balle. Dans un premier temps, on
prendra pour f la force de gravitation et le frottement du mouvement dans lair :

dx
f:mg"‘k?la‘l'l@

dx

dt

dz

E? (2)

oll ¢ € R3 est le champ de gravitation supposé constant, k; et ks sont deux constantes qui
dépendent de la balle. L’équation différentielle d’ordre 2 obtenue dans ce cadre n’admet pas de
solution analytique, mais sa résolution approchée par les schémas numériques vus en cours ne
présente pas de difficulté particuliere.

On se rameéne dans un premier temps a une EDO d’ordre 1 en posant

(e, @

dX
] g

et I’équation (2) devient

ou
R3 x R3 — R? x R?

E) o (v,g—i— (2 + f}iju) U> | (5)

La position et la vitesse de la balle a I'instant 0 étant supposés connues, on peut appliquer un
schéma d’Euler explicite pour effectuer un calcul numérique dune solution approchée :

{XO ~ X(0)

6
X1 = Xy + hF(Xy), ©)

ce qui peut se réécrire, en notant v le vecteur vitesse :

Ty = 2(0)
Vg = E(O)

Tpy1 = Ty + hoy,

k k
Vgt1 =V +h | g+ *1+*2||Uk|| Uk,
m m

Ici, h est le pas temporel du schéma.

2 Collisions

On se propose d’implémenter l'interaction de la balle avec divers obstacles (sol, murs, etc.).
On modélisera les collisions avec d’autres objets comme des conditions aux limites pour I’équa-
tion différentielle régissant le mouvement sans collision. L'un des problemes a résoudre est de
déterminer précisément l'instant des collisions afin d’éviter que la balle ne pénéetre dans un
obstacle.

Lors de l'utilisation du schéma d’Euler (7), on obtient un ensemble discret de points de la
trajectoire de la balle. Pour simplifier, on peut se représenter la trajectoire approchée corres-
pondante comme une fonction continue Z,pprox, affine par morceaux, passant par chacun des
points trouvés :

1
VE € [0, h]: Zuppron (B + 1) = 1 ((h D + mH). (8)

Avec cette approche, la détection d'une collision entre les instants t; et t;,, se ramene donc
a trouver les éventuels points d’intersection entre la boule dont le centre parcourt le segment
[k, Tk41] et les obstacles considérés du probleme (supposés immobiles).

Zo Z1
)

X3

772777777X7777777777777

Y s

FIGURE 1 — Exemple de détection d'une collision dans Uintervalle [ts3, t4].

Les obstacles les plus simples a modéliser sont des plans, ou plus précisément des demi-
espaces affines, définis par une inéquation du type :

axr+ By +yz+0 > 0.

Le probléeme de déterminer les intersections entre une boule suivant un parcours rectiligne et
un demi-espace se ramene alors a étudier les solutions d’une équation linéaire.

2

Lorsqu'une collision avec un obstacle est détectée dans l'intervalle [tx,tx41], une premiere
approche consiste a :

1. déterminer l'instant ¢., de la collision,

2. appliquer le schéma d’Euler explicite jusqu’a t., (au lieu d’aller jusqu’a 5,1, ce qui ferait
pénétrer la balle a U'intérieur de I'obstacle), de maniére a déterminer xco et veol,

3. appliquer de nouveau un schéma d’Euler explicite en prenant comme conditions initiales
/
Teol €6 VUeg)-

/

o1 désigne la vitesse de la balle apres un rebond. On pourra prendre :

Ici, v

lezol = p(UCOI) -)‘Q<Ucol>7 (9)

ou p désigne le projecteur orthogonal sur 'obstacle, ¢ le projecteur orthogonal associé et A €
[0, 1] une constante dépendant du matériau (A = 0 pour un choc mou sans rebond, A = 1 pour
un rebond parfait).

3 Implémentation en Python

Un moteur graphique temps réel rudimentaire est fourni, capable d’afficher :
e des balles,
e des murs rectilignes.

I1 définit deux classes de base (BaseFlatWall et BaseBall). Le travail des étudiants consistera
essentiellement a écrire une classe descendante de BaseBall définissant une nouvelle méthode
evolve(self, deltat) qui sera capable de mettre a jour les vitesse et position de la balle a
I'instant ¢ 4+ 0t les connaissant a l'instant ¢. Toutes les modifications se feront dans le fichier
ball.py.

Pour fonctionner, le moteur graphique nécessite l'installation de plusieurs bibliotheques
graphiques de Python :

pip install PyOpenGL PyGame image --user

Listing 2 — Installation des bibliotheques graphiques
L’ensemble des fichiers de travail peut étre téléchargé a cette adresse :
https://www.math.univ-toulouse.fr/~vfeuvrie/12spe/physics.zip

Une fois I'installation effectuée, le moteur se lance de la maniere suivante :

python engine.py experimentl

Listing 3 — Lancement du moteur

Ici, experiment1 désigne le nom d’un fichier Python situé dans le répertoire courant contenant
les parametres de I'expérience :

e définition des obstacles,

e vitesse et position initiales de la balle.

https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/physics.zip

AR

I I, 77777 77777 7777777
. R ey
N Y A 7777777777777 277777777
s R ey
N R Ay
: R iy
N Y A 77777777 7707777777777
: R ey
N Y A 7777777 7707777777777777777
. Ry, Auaiaiaoisisoisoiuiiiiinoiioisizonnonoa

BN 777 7777 77 7777777
NN P Ry 1777777
N B Ay
NN P ey
N 2777 7 77 7 7777777
N P Ay
N N Ry
. 7 Y ey
A P Ry
R Ay

777 Ry

YIIIIIIIIIIIIIII I I 777777 777777707707 27777770777

I I I I I I I I I I 7177777777777 777777

CIIIIIIIIIII 727207727 207727

FIGURE 2 — Modélisation des murs d’une « salle » carrée a I’aide de quatre demi-espaces affines

import game, wind

Une variable globale qui servira a stocker la liste des murs du probléme

Bounds []

class FlatWall (game.BaseFlatWall):
def intersect (self , pl, p2, r):
A faire:
renvoie l’intersection (si elle existe) entre le mur et une boule de
rayon r
se déplagcant sur le segment d’extrémités pl et p2.

On utilisera:
self.P un point qui appartient au plan du mur
self .N un vecteur normal (sortant) du mur

2000

return None

class Ball(game.BaseBall):
def evolve(self, deltat):
A faire:
mettre a jour P, dP, O, dO (connus d l’instant t) pour déterminer leurs
valeurs a [’ instant t+deltat.

Listing 1 — Fichier ball.py a modifier par les étudiants

D’autres fichiers d’expériences sont fournis, et il est possible de définir ses propres parametres
soi-méme si on le souhaite. Il est en outre possible d’agir en temps réel sur ’expérience en cours
en utilisant les touches de direction du clavier, qui vont modifier le vecteur vitesse de la balle.

Pour simplifier la visualisation des résultats, la modélisation se fera dans R2. Cela revient
simplement a considérer que dans le schéma (7), les vecteurs zj, et vy, ont deux composantes au
lieu de trois. La classe BaseBall est munie des champs et méthodes suivants :

R (flottant) : rayon de la balle;

M (flottant) : masse de la balle;

P (tableau de deux flottants) : position de la balle;

dP (tableau de deux flottants) : vitesse de la balle;

0 (flottant) : angle de la balle (& utiliser si on veut modéliser la rotation);

d0 (flottant) : vitesse angulaire de la balle (a utiliser si on veut modéliser la rotation) ;

evolve(self, deltat) : une fonction (& réécrire) qui mettra a jour P et dP. Elle sera appelée
fréquemment par le moteur graphique, avant chaque affichage, plusieurs dizaines de fois
par seconde. L’affichage se base sur les valeurs de P et R pour dessiner la balle au cours
du temps. Si on ne modifie pas P dans la fonction evolve alors la balle restera immobile.

La valeur de deltat n’est pas fixe : elle dépend de la durée qui s’est écoulée depuis
le dernier affichage et s’exprime en secondes. Lors de I'application du schéma (7) pour
calculer les nouvelles valeurs de P et dP, il est important d’utiliser un pas h « petit » pour
subdiviser 'intervalle [¢, t+ dt]. En effet, dans certaines situations (si la machine « rame »,
ce qui peut arriver ponctuellement si elle est sollicitée par un autre programme), il se peut
que 6t soit grand (par exemple, de I'ordre d’une seconde). Si on prenait cette valeur pour
le pas h, on pourrait avoir une perte de précision de la modélisation. On s’assurera donc
de prendre un pas proche de 1072 par exemple.

Il faudra dans tous les cas ajuster le pas h lors du calcul de maniere a :

e ne pas pénétrer dans un obstacle comme expliqué plus haut,

e ne pas dépasser ot.

Il est critique que le code de la fonction evolve s’exécute rapidement, pour assurer la
fluidité de l'affichage en temps réel. On prendra donc soin de ne pas faire de boucles ou
de calculs inutiles dans cette fonction.

La classe BaseFlatWall implémente un obstacle plat (un plan) et est munie des champs sui-
vants :

P (tableau de deux flottants) : un point qui appartient au plan de l'obstacle;

N (tableau de deux flottants) : un vecteur unitaire normal au plan avec la convention « normale
sortante ».

Ainsi, les points M qui ne font pas partie de ’obstacle sont ceux vérifiant :
—
PM-N >o0. (10)

Pour gérer les collisions, il faudra écrire un code pour détecter si la balle rencontre I'un des
obstacles au cours de ’exécution de la fonction evolve, et procéder comme expliqué plus haut.

Voici deux liens vers des vidéos qui permettent de voir ce qu’il est possible d’obtenir avec
une gestion compleéte des collisions :

e https://www.math.univ-toulouse.fr/~vfeuvrie/12spe/moviel.avi (la vitesse a été
divisée par 4 pour laisser le temps de bien observer le comportement lors des collisions)

e https://www.math.univ-toulouse.fr/~vfeuvrie/12spe/movie2.avi

4 Améliorations possibles

Au cours du travail, plusieurs raffinements pourront étre apportés progressivement au modele
physique si 'avancement du projet le permet :

e prise en compte de la rotation de la balle (effet de sol lors des rebonds);

e chocs durs, chocs mous, régimes différents lors d'un contact prolongé (lorsque la balle
roule sur le sol) ;

e ajout d'une soufflerie pour modéliser I'effet d’un vent (non uniforme) qui agit sur la balle ;

e gestion simultanée de plusieurs balles susceptibles d’entrer en collision les unes avec les
autres.

https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie1.avi
https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie2.avi

	Introduction
	Collisions
	Implémentation en Python
	Améliorations possibles

