
Université de Toulouse III, FSI – Département de Mathématiques
Licence 2, module “Calcul scientifique”, 2019–2020

Projet: “Réalisation d’un petit moteur physique”
Février 2020

Les moteurs physiques servent à modéliser, en temps réel ou non, des interactions entre
des objets solides. Ils sont utilisés dans des domaines très variés, qui vont des jeux vidéos à
la conception de pièces de machines. Le but de ce projet est d’implémenter un petit moteur
physique interactif en Python.

1 Introduction
Les lois de Newton sont connues depuis plus de trois siècles et permettent de modéliser le
mouvement d’un corps connaissant les forces qui s’exercent sur lui. On s’intéresse au mouvement
d’une balle de masse m, repérée par la position x : R → R3 de son centre au cours du temps.
La seconde loi de Newton donne :

d2x

dt2
= 1
m
f(t), (1)

où f : R → R3 est la somme des forces s’exerçant sur la balle. Dans un premier temps, on
prendra pour f la force de gravitation et le frottement du mouvement dans l’air :

f = mg + k1
dx

dt
+ k2

∥∥∥∥∥dxdt
∥∥∥∥∥ dxdt , (2)

où g ∈ R3 est le champ de gravitation supposé constant, k1 et k2 sont deux constantes qui
dépendent de la balle. L’équation différentielle d’ordre 2 obtenue dans ce cadre n’admet pas de
solution analytique, mais sa résolution approchée par les schémas numériques vus en cours ne
présente pas de difficulté particulière.

On se ramène dans un premier temps à une EDO d’ordre 1 en posant

X =
(
x,
dx

dt

)
, (3)

et l’équation (2) devient
dX

dt
= F (X), (4)

où

F :


R3 × R3 → R3 × R3

(x, v) 7→
(
v, g +

(
k1

m
+ k2

m
‖v‖

)
v

)
.

(5)

La position et la vitesse de la balle à l’instant 0 étant supposés connues, on peut appliquer un
schéma d’Euler explicite pour effectuer un calcul numérique d’une solution approchée :X0 = X(0)

Xk+1 = Xk + hF (Xk),
(6)

1



ce qui peut se réécrire, en notant v le vecteur vitesse :

x0 = x(0)

v0 = dx

dt
(0)

xk+1 = xk + hvk

vk+1 = vk + h

(
g +

(
k1

m
+ k2

m
‖vk‖

)
vk

)
.

(7)

Ici, h est le pas temporel du schéma.

2 Collisions
On se propose d’implémenter l’interaction de la balle avec divers obstacles (sol, murs, etc.).
On modélisera les collisions avec d’autres objets comme des conditions aux limites pour l’équa-
tion différentielle régissant le mouvement sans collision. L’un des problèmes à résoudre est de
déterminer précisément l’instant des collisions afin d’éviter que la balle ne pénètre dans un
obstacle.

Lors de l’utilisation du schéma d’Euler (7), on obtient un ensemble discret de points de la
trajectoire de la balle. Pour simplifier, on peut se représenter la trajectoire approchée corres-
pondante comme une fonction continue xapprox, affine par morceaux, passant par chacun des
points trouvés :

∀t ∈ [0, h] : xapprox(tk + t) = 1
h

(
(h− t)xk + txk+1

)
. (8)

Avec cette approche, la détection d’une collision entre les instants tk et tk+1 se ramène donc
à trouver les éventuels points d’intersection entre la boule dont le centre parcourt le segment
[xk, xk+1] et les obstacles considérés du problème (supposés immobiles).

x0 x1
x2

x3

x4

Figure 1 – Exemple de détection d’une collision dans l’intervalle [t3, t4].

Les obstacles les plus simples à modéliser sont des plans, ou plus précisément des demi-
espaces affines, définis par une inéquation du type :

αx+ βy + γz + δ ≥ 0.

Le problème de déterminer les intersections entre une boule suivant un parcours rectiligne et
un demi-espace se ramène alors à étudier les solutions d’une équation linéaire.

2



Lorsqu’une collision avec un obstacle est détectée dans l’intervalle [tk, tk+1], une première
approche consiste à :

1. déterminer l’instant tcol de la collision,

2. appliquer le schéma d’Euler explicite jusqu’à tcol (au lieu d’aller jusqu’à tk+1, ce qui ferait
pénétrer la balle à l’intérieur de l’obstacle), de manière à déterminer xcol et vcol,

3. appliquer de nouveau un schéma d’Euler explicite en prenant comme conditions initiales
xcol et v′col.

Ici, v′col désigne la vitesse de la balle après un rebond. On pourra prendre :

v′col = p(vcol)− λq(vcol), (9)

où p désigne le projecteur orthogonal sur l’obstacle, q le projecteur orthogonal associé et λ ∈
[0, 1] une constante dépendant du matériau (λ = 0 pour un choc mou sans rebond, λ = 1 pour
un rebond parfait).

3 Implémentation en Python
Un moteur graphique temps réel rudimentaire est fourni, capable d’afficher :

• des balles,

• des murs rectilignes.

Il définit deux classes de base (BaseFlatWall et BaseBall). Le travail des étudiants consistera
essentiellement à écrire une classe descendante de BaseBall définissant une nouvelle méthode
evolve(self, deltat) qui sera capable de mettre à jour les vitesse et position de la balle à
l’instant t + δt les connaissant à l’instant t. Toutes les modifications se feront dans le fichier
ball.py.

Pour fonctionner, le moteur graphique nécessite l’installation de plusieurs bibliothèques
graphiques de Python :

pip install PyOpenGL PyGame image --user

Listing 2 – Installation des bibliothèques graphiques

L’ensemble des fichiers de travail peut être téléchargé à cette adresse :

https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/physics.zip

Une fois l’installation effectuée, le moteur se lance de la manière suivante :
python engine.py experiment1

Listing 3 – Lancement du moteur

Ici, experiment1 désigne le nom d’un fichier Python situé dans le répertoire courant contenant
les paramètres de l’expérience :

• définition des obstacles,

• vitesse et position initiales de la balle.

3

https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/physics.zip


Figure 2 – Modélisation des murs d’une « salle » carrée à l’aide de quatre demi-espaces affines

import game , wind

# Une v a r i a b l e g l o b a l e qu i s e r v i r a à s t o c k e r l a l i s t e des murs du p rob l ème
Bounds = [ ]

class FlatWall (game . BaseFlatWall ) :
def i n t e r s e c t ( s e l f , p1 , p2 , r ) :

’ ’ ’
A f a i r e :
renvo ie l ’ i n t e r s e c t i o n ( s i e l l e e x i s t e ) en t re l e mur e t une bou l e de

rayon r
se dé p la ç ant sur l e segment d ’ e x t r é mit é s p1 e t p2 .

On u t i l i s e r a :
s e l f .P un po in t qu i appa r t i en t au plan du mur
s e l f .N un vec t eur normal ( s o r t an t ) du mur
’ ’ ’
return None

class Bal l (game . BaseBal l ) :
def evo lve ( s e l f , d e l t a t ) :

’ ’ ’
A f a i r e :
mettre à jour P, dP , O, dO ( connus à l ’ i n s t a n t t ) pour dé terminer l e u r s

v a l e u r s à l ’ i n s t a n t t+d e l t a t .
’ ’ ’

Listing 1 – Fichier ball.py à modifier par les étudiants

4



D’autres fichiers d’expériences sont fournis, et il est possible de définir ses propres paramètres
soi-même si on le souhaite. Il est en outre possible d’agir en temps réel sur l’expérience en cours
en utilisant les touches de direction du clavier, qui vont modifier le vecteur vitesse de la balle.

Pour simplifier la visualisation des résultats, la modélisation se fera dans R2. Cela revient
simplement à considérer que dans le schéma (7), les vecteurs xk et vk ont deux composantes au
lieu de trois. La classe BaseBall est munie des champs et méthodes suivants :

R (flottant) : rayon de la balle ;

M (flottant) : masse de la balle ;

P (tableau de deux flottants) : position de la balle ;

dP (tableau de deux flottants) : vitesse de la balle ;

O (flottant) : angle de la balle (à utiliser si on veut modéliser la rotation) ;

dO (flottant) : vitesse angulaire de la balle (à utiliser si on veut modéliser la rotation) ;

evolve(self, deltat) : une fonction (à réécrire) qui mettra à jour P et dP. Elle sera appelée
fréquemment par le moteur graphique, avant chaque affichage, plusieurs dizaines de fois
par seconde. L’affichage se base sur les valeurs de P et R pour dessiner la balle au cours
du temps. Si on ne modifie pas P dans la fonction evolve alors la balle restera immobile.
La valeur de deltat n’est pas fixe : elle dépend de la durée qui s’est écoulée depuis
le dernier affichage et s’exprime en secondes. Lors de l’application du schéma (7) pour
calculer les nouvelles valeurs de P et dP, il est important d’utiliser un pas h « petit » pour
subdiviser l’intervalle [t, t+δt]. En effet, dans certaines situations (si la machine « rame »,
ce qui peut arriver ponctuellement si elle est sollicitée par un autre programme), il se peut
que δt soit grand (par exemple, de l’ordre d’une seconde). Si on prenait cette valeur pour
le pas h, on pourrait avoir une perte de précision de la modélisation. On s’assurera donc
de prendre un pas proche de 10−3 par exemple.
Il faudra dans tous les cas ajuster le pas h lors du calcul de manière à :

• ne pas pénétrer dans un obstacle comme expliqué plus haut,
• ne pas dépasser δt.

Il est critique que le code de la fonction evolve s’exécute rapidement, pour assurer la
fluidité de l’affichage en temps réel. On prendra donc soin de ne pas faire de boucles ou
de calculs inutiles dans cette fonction.

La classe BaseFlatWall implémente un obstacle plat (un plan) et est munie des champs sui-
vants :

P (tableau de deux flottants) : un point qui appartient au plan de l’obstacle ;

N (tableau de deux flottants) : un vecteur unitaire normal au plan avec la convention « normale
sortante ».

Ainsi, les points M qui ne font pas partie de l’obstacle sont ceux vérifiant :
−−→
PM ·

−→
N > 0. (10)

Pour gérer les collisions, il faudra écrire un code pour détecter si la balle rencontre l’un des
obstacles au cours de l’exécution de la fonction evolve, et procéder comme expliqué plus haut.

Voici deux liens vers des vidéos qui permettent de voir ce qu’il est possible d’obtenir avec
une gestion complète des collisions :

5



• https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie1.avi (la vitesse a été
divisée par 4 pour laisser le temps de bien observer le comportement lors des collisions)

• https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie2.avi

4 Améliorations possibles
Au cours du travail, plusieurs raffinements pourront être apportés progressivement au modèle
physique si l’avancement du projet le permet :

• prise en compte de la rotation de la balle (effet de sol lors des rebonds) ;

• chocs durs, chocs mous, régimes différents lors d’un contact prolongé (lorsque la balle
roule sur le sol) ;

• ajout d’une soufflerie pour modéliser l’effet d’un vent (non uniforme) qui agit sur la balle ;

• gestion simultanée de plusieurs balles susceptibles d’entrer en collision les unes avec les
autres.

6

https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie1.avi
https://www.math.univ-toulouse.fr/~vfeuvrie/l2spe/movie2.avi

	Introduction
	Collisions
	Implémentation en Python
	Améliorations possibles

