Faculté des sciences et ingénierie (Toulouse III) Département de mathématiques L2 Maths, UE de Méthodes Numériques ED3MATDM

Année universitaire 2020-2021

Feuille de TD 1 : Interpolation de Lagrange

Exercice 1. (Identification)

On considère $x, y \in \mathbb{R}^4$ donnés par : x = [-2, 0, 1, 2] et y = [4, 0, 0, 4]. Parmi les polynômes suivants, lequel est le polynôme d'interpolation aux points x, y (justifiez votre réponse)?

- 1. $P_1(X) = X^4 \frac{2}{3}X^3 3X^2 + \frac{8}{3}X$
- 2. $P_2(X) = \frac{4}{3}X^2 \frac{4}{3}$
- 3. $P_3(X) = \frac{1}{3}X^3 + X^2 \frac{4}{3}X$.

Exercice 2. (Existence et unicité)

- 1. Montrez qu'il existe une infinité de polynômes de degré 2 dont le graphe passe par les points (0,0) et (1,0).
- 2. Montrez qu'il n'existe pas de polynôme de degré 2 passant par les points (0,1), (1,4), (2,15) et (3,40).

Exercice 3. (Construction... Malin ou bourrin?)

Calculer les polynômes d'interpolation de Lagrange aux points suivants :

- a. x = [-1, 2, 3] et y = [4, 4, 8]
- b. x = [-2, -1, 0, 1] et y = [0, -2, -4, 0]
- c. x = [-1, 0, 1, 2] et y = [6, 2, 0, 0]
- d. x = [-1, 0, 1] et y = [1, 0, 1]
- e. x = [-3, -1, 2, 10] et y = [-3, -1, 2, 10]

Exercice 4. (Utilisation de la caractérisation)

Soit p un polynôme. Montrer que son polynôme d'interpolation aux noeuds $x_i \in \mathbb{R}$, $0 \le i \le n$, est le reste de la division euclidienne de p par le polynôme $\pi_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$.

Exercice 5. (Vandermonde et interpolation de Lagrange...)

Pour $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1}$, on considère la matrice

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

- 1. Montrer que $\det(V(x_0, \ldots, x_n)) = \prod_{(i,j), 0 \le i < j \le n} (x_j x_i).$
- 2. Soit $(y_0, \ldots, y_n) \in \mathbb{R}^{n+1}$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}^n$ tel que $P(x_i) = y_i$ si et seulement si $x_i \neq x_j$ pour tout $(i, j), i \neq j$.

Exercice 6. (Construction...)

Calculer le polynôme P de dergré inférieur ou égal à 4 tel que :

- 1. P(-2) = 11, P(-1) = 1, P(0) = 1, P(1) = 5, P(2) = 31.
- 2. P(-1) = 1, P'(-1) = -1, P(0) = 0, P(1) = 1, P'(1) = 1.

Exercice 7. (Base de Lagrange)

Soit x_0, \ldots, x_n (n+1) réels distincts deux à deux. Pour $k \in \{0, \ldots, n\}$, on note

$$L_k(x) = \prod_{j \in \{0,\dots,n\}, j \neq k} \frac{x - x_j}{x_k - x_j}$$

le k-ième polynôme de Lagrange.

- 1. Montrer que L_k est un polynôme de degré n vérifiant $L_k(x_i) = \delta_{ki}$ pour tous $k, i \in \{0, ..., n\}$.
- 2. En déduire que la famille de polynômes $\{L_k\}_{k\in\{0,\dots,n\}}$ forme une base de $\mathbb{R}_n[X]$.

Exercice 8. (examen 2016)

Soient $x_0 = 0 < x_1 < \ldots < x_n$ et des réels donnés y_i , $0 \le i \le n$. On considère le polynôme d'interpolation satisfaisant

$$P(x_0) = y_0$$
, $P(-x_i) = P(x_i) = y_i$, pourtous $1 \le i \le n$.

- 1. Montrer que le polynôme P est pair.

 Indication : on pourra écrire P dans la base de Lagrange
- 2. En déduire en un minimum de calculs le polynôme d'interpolation vérifiant

$$P(-1) = 2$$
, $P(0) = 4$, $P(1) = 2$.

Exercice 9. (examen 1999)

- 1. Calculer le polynôme d'interpolation de Lagrange de la fonction $f(x) = x(x^2 1)$ relativement aux points $x_0 = -1$, $x_1 = 1$ et $x_2 = 2$.
- 2. Même question en rajoutant le point $x_3 = -2$.

Exercice 10. (partiel 2003)

- 1. Rappeler l'expression de la base de Newton de $\mathbb{R}_5[X]$ associée aux noeuds 1, 2, 3, 4, 5, 6.
- 2. Montrer qu'il s'agit bien d'une base.
- 3. Donner, dans cette base, l'expression du polynôme $P \in \mathbb{R}_5[X]$ tel que

$$P(1) = P(6) = 1$$
, $P(2) = P(3) = P(4) = P(5) = 0$.

4. Calculer P(0).

Exercice 11. (Partiel 2014)

Étant donnés six réels x_1 , a, b, c, d et e, on considère le tableau de différences divisées suivant :

x_k	$f[x_k]$	$f[x_k, x_{k+1}]$	$f[x_k,\ldots,x_{k+2}]$	$f[x_0, x_1, x_2, x_3]$
$x_0 = 0$	1			
x_1	-1	1		
$x_2 = -1$	0	b	d	
$x_3 = 2$	a	c	e	$\frac{2}{3}$

- 1. Calculer x_1 , a, b, c, d et e.
- 2. Donner, dans la base de Newton le polynôme P_3 qui interpole $(0,1), (x_1,-1), (-1,0)$ et (2,a).
- 3. On considère les fonctions suivantes définies sur $\mathbb R$:

$$f_1: x \mapsto \begin{cases} 2+9x^2 & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}, \qquad f_2: x \mapsto \begin{cases} 0 & \text{si } x \geqslant -1 \\ -3x^2 - x^3 & \text{sinon} \end{cases}$$

Pour α et β deux réels, on définit la fonction $f: x \in \mathbb{R} \mapsto \alpha f_1(x) + \beta f_2(x)$. Montrer que P_3 est le polynôme d'interpolation de f en x_0, x_1, x_2 et x_3 si et seulement si $\alpha = \frac{1}{2}$ et $\beta = \frac{1}{4}$.

4. À partir de maintenant, on pose $\alpha = \frac{1}{2}$ et $\beta = \frac{1}{4}$.

Calculer dans la base de Newton le polynôme P_4 qui interpole les points (0,1), $(x_1,-1)$, (-1,0), (2,a) et (1,6).

 P_4 est-il le polynôme d'interpolation à f en $0, x_1, -1, 2$ et 1?

Exercice 12. (Convergence uniforme)

On considère $a = x_0 < x_1 < \ldots < x_n = b$ et le polynôme d'interpolation P_n tel que

$$\forall i = 0, \dots n, \quad P_n(x_i) = e^{x_i}.$$

Montrer que la suite de polynômes d'interpolation P_n converge uniformément vers la fonction exponentielle lorsque n tend vers l'infini, c'est-à-dire que

$$\sup_{x \in [a,b]} |P_n(x) - e^x| \underset{n \to \infty}{\longrightarrow} 0$$

3