Commun. Contemp. Math. 2022.24. Downloaded from www.worldscientific.com
by SORBONNE UNIVERSITY on 06/10/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

World Scientific

Vol. 24, No. 5 (2022) 2150064 (B8] pages) T worTdscientific com

© World Scientific Publishing Company
DOI: 10.1142/50219199721500644

Communications in Contemporary Mathematics \\’

Perturbation theory of the quadratic Lotka—Volterra
double center

Jean—Pierre Francoise™

Sorbonne-Université, Laboratoire Jacques—Louis Lions
UMR 7598 CNRS, 4 Place Jussieu, 75252, Paris, France
jean-pierre.francoise Qupmec. fr

Lubomir Gavrilov

Institut de Mathématiques de Toulouse
Université de Toulouse, 31062, Toulouse, France
lubomir. gavrilov@math.univ-toulouse.fr

Received 19 November 2020
Accepted 11 May 2021
Published 14 October 2021

We revisit the bifurcation theory of the Lotka—Volterra quadratic system
o — 2 2
T=—y—x°+y°,
Xo:
Yy =x—2xy

with respect to arbitrary quadratic deformations. The system has a double center, which
is moreover isochronous. We show that the deformed system can have at most two limit
cycles on the finite plane, with possible distribution (4, j), where i+ j < 2. Our approach
is based on the study of pairs of bifurcation functions associated to the centers, expressed
in terms of iterated path integrals of length two.

Keywords: Double centers; iterated integrals; Bautin ideal; Bifurcation function; limit
cycles.
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1. Introduction

We are interested in quadratic perturbations of the following special reversible
Lotka—Volterra quadratic system:

;. 2 2
T=-y—z°+y°,

X()I (1)
Y=z - 2ry,
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y=1/2

Fig. 1. Phase portrait of ().

which is equivalently written in coordinates z = x + iy, Z = x — iy as

dz ) 9
o (2)

This implies that the vector field Xy has a center at z = 0 and z = 4, that is to
say at the origin (z,y) = (0,0) and at (z,y) = (0, 1), see Fig. 1. The period of the

orbits is
dt = =
/ % iz — 22

hence the two centers are isochronous (the orbits have a constant period).

We are interested in the limit cycles which an arbitrary quadratic deformation
of (@) can have. The limit cycles on a finite distance from the origin form two nests,
containing either the focus close to (0,0), or the focus close to (0,1). We denote
their number by ¢ and j. The main result of the paper is easy to formulate: the
possible distributions (i,j) of limit cycles are those, for which i+ j < 2.

Although the above result is simple, it hides several difficulties, which were not
resolved until recently. To the end of this Introduction, we outline the proof of
Theorem [I1] which will also be an occasion to illustrate some recent developments
of the bifurcation theory of vector fields of infinite co-dimension.

The system () has, as suggested by ([@]), a first integral

?+y? 2?4+ (y—1)?

H = = 1. 3
2y — 1 29 — 1 + (3)

It induces a polynomial foliation on R? (or C2)
(1—2y)%dH =0 (4)

obviously invariant under the involution x — —z, but also with respect to the
involution

y—1-y. (5)
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The latter exchanges the two period annuli of the vector field X, which shows that
the separate study of their deformations is analogous. If we prove that the cyclicity
of the first period annulus is two, this implies that the cyclicity of the second period
annulus is also two. The problem which we solve in the paper is the simultaneous
study of the bifurcations of the two period annuli.

An arbitrary quadratic perturbation of ) or (), can be written in one of the
following alternative forms:

1 o o
SA—w?dH + > (aa'y’dy +bya'y’dr) =0 (6)
0<i4,5<2

or

i=—y—a*+y°+ Z aga'y’,
0<i,j<2
Xa,b : (7)

y=x—2xy — Z bijwiyj.

0<4,5<2

In coordinates z = x + 4y, Z = « — iy, and up to an affine transformation of R? and
a scaling of time, each of the above systems can be written in the following normal
form:

t=(M +i)z+A2>+ B22+Cz% B,C € C,\ €R, (8)
where
A=—-1, B=X+id3, C=X+1i)5, NER (9)

and A1, g, ..., A5 are small real constants, see [32, 21]. We obtain finally the vector
field

x & =—y—z*+y°+ Mz + Xa(2® + %) + Ma(2® — y®) + 252y,
N
g == 2zy+ My + A3(2® +y7) + As(2? —y?) — 2\4zy.

to be studied in the paper. Thus, to obtain from (), the normal form (I0), we have
to substitute

alpg = )\1, bOl = _)\h
a20 = A2 + A4, bag = —A3 — As,
ap2 = A2 — A4, bo2 = —A3 + As,
air =25, bip = 2\4,

and apg = boo = ap1 = blO =0.
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The foliation underlying the vector field X takes the form

1
FrigdH —w =0, (11)
where
1 P g i j :
YT -2 Y (aga'y’dy + bya'y’dr) = Y Aw;, (12)
0<i,j<2 i=1
dy — yd 2+ y?)d ‘+y?
i = Py =yl w2:($+79)2y, wgz,Ldez, (13)
2y —1) (2y —1) 2y —1)
(2% —y?)dy + 2xyda _ 2xydy — (¢ —y*)dx
Wy = B} ) W5 = 2 (14)
(2y — 1) (2y — 1)

Let P(h) be the Poincaré first return map associated to one of the foci of (),
which are close to (0,0) and (0, 1) for a;j, b;; sufficiently small. Here, h is as usual
the restriction of the first integral H of the non-perturbed system on a transversal
open segment through the focus. It is easily seen that P(h) is analytic both in h
and the parameters a;j, b;;, provided that the deformation is small and % is close
to the critical value of H. Expanding the displacement map

P(h) — h

in a power series in h
P(h) ~h =" px(A)h*
k=0

we consider the ideal B = (pi()\)) C R{z,y} generated by the coefficients of h*. The
fundamental fact about this Noetherian ideal is, that it is polynomially generated.

The main advantage of the form (8] is that its Bautin ideal is known and
relatively simple, which is not the case of (). For this reason, the forms (8) and ()
will be used from now on.

We denote By, By the local Bautin ideals associated to (0,0) and (0, 1), localized
at A = 0. Our first result is the explicit form of the generators of B1,Bs in the
parameter space R{\1,..., A\¢}, see Theorem [l The proof uses in an essential way
the explicit form of the so-called Melnikov functions, combined with a version of
the Nakayama lemma. It follows from this result, that the irreducible algebraic set
of quadratic systems of Lotka—Volterra type £(1,1,1), has a self-intersection at
the “point”.This phenomenon is illustrated on Fig. 2l The two local branches of
L(1,1,1) near the point (2 are interchanged by the involution on the parameter
space, induced by the affine involution z — i—z, see (B). As the cyclicity of £(1,1,1)
is at least two, Fig. 2lsuggests the existence of a (2, 2) distribution, which was never
met before in a quadratic system. This can be seen as a posteriori motivation for
this paper. From this perspective our main result is negative. Indeed, neither (2, 2)
nor even (2,1) or (1,2) distribution is possible on the finite plane under quadratic

perturbation of 2’ =iz — 22.
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Fig. 2. The Lotka—Volterra component £(1, 1, 1) has a self-intersection at the isochronous system

2 =iz — 22,

In a recent paper, Francoise et al. (cf. [II]) introduce an algebro-geometric
setting for the space of bifurcation functions involved in the local Hilberts 16th
problem on a period annulus. Each possible bifurcation function is in one-to-one
correspondence with a point in the exceptional divisor E of the canonical blow-up
BI(C™) of the Bautin ideal I . In this setting, the notion of essential perturbation,
first proposed by Iliev [21], is defined via irreducible components of the Nash space
of arcs Arc(BI(C™), E). The arcs here are seen as one-parameter deformations of
a plane differential system with a center. The example of planar quadratic vector
fields with a center was further discussed. Here, in this paper, we develop the same
tools in the case of the quadratic Lotka—Volterra double center. In that case, the
first-order bifurcation function was recently directly computed by complex residues
techniques in [I3]. The first-order Melnikov function had been computed by using
the fact that is isochronous with an explicit linearization in [I5] (see also [25]).
We mention previous important contributions of [4] to the perturbation of Lotka—
Volterra double center also based on Bautin ideal. The higher-order bifurcation
function can, in general, be expressed in terms of iterated integrals (see [10, 17, 12]).
We succeed here to compute the second-order bifurcation function using the shuffle
formula and the complex residues techniques. An expression for this second-order
bifurcation function had been found first by Iliev [21], Sec. 5-III]. This implies that
the cyclicity of each annulus of Xy, is two, thus correcting a mistake in [4]. Using
the fact that the Lotka—Volterra double center is isochronous, Li and Llibre [20]
computed the second-order bifurcation function by averaging theory, by making
use of computer algebra. Partial results about the distribution of limit cycles were
also obtained [20, p. 13]. In particular, it was suggested that a (2, 1) distribution of
limit cycles is possible, after suitable perturbation of Xy on the finite plane. This
claim is not correct. Note, however, that nothing is known in this situation about
the bifurcation of limit cycles from infinity. We note also, that the cyclicity of the
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single period annulus of a generic quadratic Lotka—Volterra system with three real
invariant lines, is known to be two by a classical result of Zotadek [32] (recently
revisited in [33]).

In contrast to the above papers, we make essential use of the double Bautin
ideal, see Theorem [M] and Sec. [l We compute the first Melnikov functions related
to the double ideal. This computation is possible, mainly because the complexified
orbits

Iy, ={(z,y) € C*: H(z,y) = h}

are genus zero curves. Thus, the first-order Melnikov functions are computed by
residue calculus, see Sec. Bl while for the second one we need shuffle relations of
iterated integrals of length two, see Sec. 4l Alternatively, we describe in Sec. [l the
geometry of the fibration defined by H, from which the monodromy of the bifurca-
tion functions is explicitly determined. We determine in particular “the homology
of the orbit”, a new topological invariant adapted to the study of bifurcation func-
tions. The corresponding Sec. [5.1] can be seen as an introduction to this notion and
can be read independently. The description of the monodromy of the bifurcation
functions implies also their explicit form, Sec. 5.2, which provides an alternative
proof of Theorem Bl All this computations are performed for the center near (0, 0).

The explicit expression that we obtain for both the two centers is very simple.
It opens the way to compute completely the (double) Bautin ideal and prove that
we can stop at order two. Hence, the final bound is deduced.

For general references on Bifurcation Theory and Hilbert’s 16th problem see [5]
22, 29]. After the classical contributions of Bautin [I}, 2], the notion of division
by a Bautin ideal was first considered in [14} 29]. References on the center-focus
problem include [7, [3T]. The set of quadratic double centers was determined in [24]
and discussed more recently in [13].

2. The Bautin Ideal and the Bifurcation Functions

Theorem 1. The vector field X [Q) has, for small parameters A;, two foci close
to (0,0) and (0,1). The respective Bautin ideals By, Bs are given by

Bi = (A1, A3, A2)s5), (15)
By = (A1 4+ Az + A A2, As, AsAa). (16)

The zero locus of B; has two irreducible components corresponding to systems
or reversible or Lotka—Volterra type

A1 = A3 =X5 =0 (reversible component), (17)
A1 =X =X3 =0 (Lotka—Volterra component), (18)
with a similar structure of the isomorphic zero locus of Bs
A1 = A3 =2X; =0 (reversible component), (19)
A+ A3+ AMA2 =X = X5 =0 (Lotka—Volterra component). (20)
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Let us recall that the set of quadratic systems with a center form an algebraic
subvariety (of the set of coefficients of all quadratic systems) with four irreducible
components [28, Theorem 1.1; 11, Theorem 9]. In particular, the Lotka—Volterra
component, denoted further £(1,1,1) is an irreducible algebraic variety of co-
dimension three in the space of all quadratic vector fields. It follows from (IS])
and (20) that near A = 0 the component £(1,1,1) has two local irreducible com-
ponents which intersect at the isochronous double center z = iz — 22 (A = 0).
Therefore, we obtain the following proposition.

Proposition 2. The Lotka—Volterra irreducible component L(1,1,1) of the set of
quadratic centers (the so-called center set) has a self-intersection at the isochronous
double center 2 =iz — 22, ([@).

The content of the above proposition is illustrated on Fig. 2 Note that in the
Kapteyn—Dulac classification of quadratic centers, as presented by Zotadek [32) The-
orem 1], the Lotka—Volterra stratum Q%V is a plane, so it has no self-intersections.
The reason is that Q% is a quotient of £(1, 1, 1) with respect to the induced action
of the affine group of linear changes of variables on R2. Recall also that the general
Lotka—Volterra system has a single center (or Morse-type equilibrium point) which
is persistent, see [28]. The double centers of the isochronous system 2 = iz — 22
are in this sense semi-persistent. This means that each of the centers is persistent
or non-persistent depending on the local branch of the stratum £(1,1,1). This
possibility is not mentioned in [28].

Proof of Theorem [Il The proof of [IT) goes back to Dulac (1908) [§]. Indeed,
following [32t 211 I, pp. 122-123] we deduce that B; is generated by A1 and the focal
values vs, v5, v7 where

v3 = 2rlmAB, (21)
vy = ;mm + B)(A—2B)BC), (22)
vy = §(|B|2 _|C]?)Im[(24 + B)B>C]. (23)

According to [@) A = —1 and v3 = —27\3. Assuming that A3 = 0 we have
vs = STml(=2 + Xa)(~1 — 2Xa)a(\a +ds)] (24)

2

= 5(_2 + A2)(—1 —2X2) A2 5 (25)
and therefore locally (vs,vs) = (A3, AoA5) and vy is generated by wvs,vs, which

proves (5.

The proof of ([I8) will be done in two steps.

(1) First, we prove that the center set of the second center (the variety of the
ideal Bs) is defined by (I3)), (20). For this, we show that when the vector field
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satisfies (1), ([20)), then it has a first integral analytic near (0, 1) and hence has
a center.

(2) Second, we show that the ideal By is radical. For this we use the information
obtained from the computation of the first and the second Melnikov functions,
and a version of Nakayama lemma, as suggested by [3, Lemma 7.4].

The involution z — —z + i exchanges the singular points near (0,0) and (0, 1) and
acts linearly on the coefficients of the vector field X, ;. Therefore the two center
sets are analytically isomorphic (near A = 0). It follows that the germ of variety of
B> has two smooth irreducible components of co-dimension three. The first one is
obviously the reversible one ([d), and the system has two reversible double centers.
To show that (20)) is the second irreducible component, we shall find a first integral
of X, which is analytic near the point (0, 1).
In what follows, we assume that A5 = Ay = 0. Equation (8) takes the form

2= (\ +i)z — 2%+ Bzz = 2(\ +i+ B2), (26)

where B = Ay + A3 € C and A, A2, A3 € R, and can be integrated as follows.
Consider the underlying foliation defined by

(1 —iX\y +iz —iB2z)zdz + (1 4+ i)\ —iZ +iB2)zdz = 0. (27)

If it were integrable, it would be of Lotka—Volterra type, and therefore would have
at least three invariant lines intersecting at singular points of the foliation. Indeed,
the following two lines are obviously invariant:

z=z+iy=0, zZ=x—1iy=0
and let the third one be
az+az+1=0, acC.
This implies on its turn an ansatz for the first integral as follows:
H=""Mzl= N0z +az+1)%, ek
The polynomial foliation dlog H = 0 is

dlaz+az+1)

— =0
az+az+1

A+ Z 4+ 1-inZ 4
z z
or equivalently
(az+az+ 1)[(1 +ir1)zdz + (1 —iA1)zdz] + Bzzd(az + @z +1) =0
(14 iX)zdz 4+ (1 —ir)zdz + (1 +i\)(az + az)zd
+ (1 —i\)(az + az)zdz + fzzd(az + az) =0
and finally
(1 —iAp)zdz + [(1 —id)az® + (a(1 — i\ + Ba)zz]dz
+ (1 +1iA1)zdz + [(1 4+ id)az? + (a1 +i\) + Ba)zz]dz = 0.

2150064-8
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Comparing this to [21) we impose
(I —iX)a =1,
a(l —i\ + 8) = —iB,
where B = Ay + i\3. Therefore
1—iM +8=N2+ix3)(1+i\)
and finally

L+ 8 =X — X\,
—A1 = Ao+ A3,

The conclusion is that if
A+ A3+ A A =0

then

Zl+i)\1 2171;)\1 i — )\1

T laztazt)ieraa ST TN

is a first integral of 26]). In other words, the variety
{AEC: AL+ A3+ Atha = Ay = A5 =0}

is a co-dimension three irreducible component of the center manifold related to the
second center. This completes the first step of our proof.

In the ring of convergent power series R{A} consider the ideal of functions
vanishing along the variety ([[)), 20). It is obviously generated by

a=A+A3+ XA, 0= A5,c= A3y
and at the second step we shall show that
By = {(a, b, c).

We examine first the information obtained from the first and the second Melnikov
functions (see the following sections). It follows from ([@4]) that there are elements
v}, v3 of the ideal By such that

VEA) =AM A3+,
WB) = As + -,

2150064-9
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where the dots replace some analytic series which vanish of order at least two at
A = 0. We can write therefore

v¥(\) =a+ac+---,
v3(A\) =b+ Be+---,

where the dots replace some analytic series which vanish along ([[9)), (20), vanish
of order at least two at A = 0, and «, 8 are appropriate constants. We can write
finally

vi(A) =a(l+O0(\) +bO) +c(a+ O(N)), (28)
v3(A) =aO\) +b(1+0N) +c(B+O0N). (29)
Similarly, the identity (@6) implies that under the condition
AM+A3=X=0
there is an element v3 of By such that
vE(N) = A+ -+,

where the dots replace some analytic series vanishing along (I9), ([20), and vanish
of order at least three at A\ = 0. Without the conditions A\; + A3 = A5 = 0, we get

v3(A) = Asha + (AL 4+ A3) (v + O(N) + As(6 + O(N)) + - -,

where the dots replace some analytic series which vanish of order at least three at
A = 0. Thus

v3(A) = c(1+0N) +a(y+O0N) +b(5+ON)).

and combining with 28], 29)

v? 1+0(\) 0 a+O0(N) a
v3 | = 0 1+00N) g+oN | o] (30)
v3 v+OM) d4+0N) 1+0(N) c

As the above matrix is invertible for A close to the origin, then a, b, ¢ belong to B,
which completes the proof of Theorem [l |

The vector field X, see (I0), defines return maps P1, P2 with associated Bautin
ideals

1 2 (V) 03(A) = (A1, Az, A2 ), (31)
By = (vi(N),v5(\),v3(N)) = (A1 + A3 + A1 d2, As, Az a). (32)

2150064-10
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P1, P2 can be divided in the corresponding ideals (31Il) and [B2)) as follows (see [14;
[30; Sec. 4.3]):

Pi(hs N)(h) = h = vy (\) (M (h) +

PE(h; A)(h) = h = vi(\) (M7 (h

Definition 1. The functions
M}, M3 and M7, M;

are called the first-order (or linear) Melnikov functions, associated to the centers
at (0,0) and (0,1). The functions

M; and M3

are called the second-order (or nonlinear) Melnikov functions, associated to the
centers at (0,0) and (0, 1).

The terminology is due to [32, Sec. 2] and it will be justified in what follows.
Given an arc

e Ae), € (R,0), A0)=0, (33)
we obtain
P (h; Me)) (h)
Pi(h; Me)) (h)

—h =" (e} M{ (h) + ;M3 (h) + esM; (h) + O(e)),
— h=e"(IMP(h) + 3M3(h) + ;M3 (h) + O(e)).
Note that not all linear combinations
1My (h) + e;My (h) + esMs (h), &} MY (h) + ;M3 (h) + Mz (h) - (34)

of Melnikov functions are admissible.

Definition 2. Let K C R? be a compact set. A (4, ) distribution of limit cycles
is said to be admissible for X, if for every € > 0 there exists A, such that ||[A|| < e
and X has a (i, j) distribution of limit cycles in K.

Let (i,7) be admissible distribution of limit cycles for X in the compact set
K. Then there exists a germ of analytic arc (B3], such that the one-parameter
family of vector fields Xy allows a distribution (i, ) limit cycles, for ¢ close to
0, [I8, Theorem 1]. Therefore to compute the possible distributions (¢, ) of limit
cycles we have to compute the number of zeros i and j of each admissible pair of
Melnikov functions (34]).

2150064-11
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Denote
5(h) = {(z,y) € R*: H(x,y) = h}, h <0,
6(h) = {(z,y) € R2:H(z,y) =h}, h>1,

the family of real ovals of the affine algebraic curve I', € C2. Using the nota-
tions (I2)—([4), the following integral formulae for the linear Melnikov functions
are well known.

Proposition 3. The linear Melnikov functions are given by

Proof. It is easy to verify that

/ wo = / wy = / ws =0,

3(h) 3(h) 3(h)

/ wQ:/ wy =0, / w1:/ w3,
5(h) 5(h) 5(h) 5(h)

/ w:)\l/ w1+/\3/ w3,
3(h) 3(h) 3(h)

ﬁ w:()\1+)\3)x (.«.)1#‘)\5/~ ws. 0
5(h) 5(h) 5(h)

The second-order (nonlinear) Melnikov function is given by the second order in
A homogeneous piece of the displacement maps P; — id, P2 — id. For a differential
one-form on C? let w’ be the Gelfand-Leray residue of w with respect to H defined
by the identity

and hence

W NdH = dw.

The second-order Melnikov function of a deformed foliation dH + cw = 0 is defined
by the following iterated integral of length two [17]:

/ LA.}(.()/
5(h)

with appropriate choice of the path §(h). In our case this implies
Proposition 4. Assume that the linear Melnikov function Mi = M3 =0 . Then

1
—M3(h) = / Wawh + wswh. (35)
4 5(h)

2150064-12
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Similarly, if M} = M3 = 0, then

1
T0) = [ = )k + s — )’ (36)
o(h)

Proof. The vanishing of fé(h) w implies A\ = A3 = 0. According to [I7] the function
M1 (h) corresponds to the coefficient A A5 in the iterated integral

5
ww'iw= Aiw;.
fo =2

Therefore, assuming in addition that Ay = 0, we get

/ ww' = / (Aawa + Asws) (Aows + Asws)’
5(h) 5(h)

= )\2)\5 / (.L)ng + LU5(.«J/2,
5(h)

where we used that [5,, waw) = [5,) wsws = 0 (This will be justified latter in the
text by using the shuffle formula). The proof of the formula for MZ2(h) follows the
same lines. ]

3. The First Melnikov Function

In this section, we compute for completeness the first Melnikov functions of X.
These results are classical, see [4, [I5, 21| 25 26]. Here, we use a simple residue
calculus, following [I3]. If we write X in the form (@)

1
5(1 —2y)?dH + w = 0, (37)
where
_ z? + y?
oy —1°
Denote
1
T = { (o) € Ca 442 = Cy - Dy £ 3 . (39)

which, for h # 0, 1, is a four-punctured Riemann sphere, where the punctures are at

(iE 1),00# (39)

2 2
Let
6(h),6(h) € H (T, Z) (40)

be a continuous family of cycles vanishing at the singular points (0,0) and (0, 1),
when h tends to h = 0 or h = 1, respectively. These two families of cycles are
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defined in a neighborhood of A = 0 and h = 1, respectively, and hence on the real
segment (0, 1).

Definition 3. The first Melnikov functions M;, M associated to the centers (0, 0)
and (0, 1), respectively, are defined by

Mﬂ@z2/ w,]%ﬂw:2/ w
5(h) 5(h)

The functions are analytic on (0,1) and therefore can be computed and com-
pared there. This is easy, as they are Abelian integrals on a Riemann sphere, so the
computation is reduced to residue calculus.

Following [I3], chose an uniformizing variable z : I';, — P! by the formula

z=x+i(y—h),i=+—1. (41)

If we note z = 2 — i(y — h) (so that Z is complex conjugate to z when h € R), we
have

T ={(22) €C?:2z2=nh(h—1)}.
The images of the four punctures (39) on the curve ([B8]) under
2:Ty — P!

are

Ao0) =o0,2007) =0, 2 (505) = =il 1),

z 73,1 = —ih,
272

where 7 is an appropriate determination of v/—1. The model of the four-punctured
Riemann sphere I'j, will be therefore the punctured complex plane C\{a, b, ¢}, where

a=—ih, b=—i(h—1), c¢=0.
O{’B’W?é’g'

(42)

‘We have

}llg% a(h) = ¢, }%1311 b(h) =c

and it is easy to check that the vanishing cycles d(h) and 6(h) are represented by
“small” simple loops containing a,c for h ~ 0, and b,c for h ~ 1, as shown on
Fig. Bl It follows that for the homology classes (denoted by the same letters) holds

S=a+v, 6=pB+7

and hence

1 1 ~
§M1(h):/ w+/ w, §M1(h):/ w+/ w.
a(h) 7(h) B(h) y(h)

The explicit computation of M; is a simple residue calculus. It was already com-
puted by Francoise and Yang [I3] and we reproduce them below.
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b=—i(h—1)© B b=—i(h—1)

Fig. 3. The loops a, 8,7,8 and 6 for h € (0, 1).

With the notations @), (I2)-(I4) it follows from [I3] that

1 4h —1
Ml(h):fﬁﬂ'llh <A1 ) +A0), h <0,

ALM)%WWIl)O%M81+BO, h>1,
where
A =16(A3 4+ A1), Ao =2(A3 — 3)\1),
By = A, By=2(\3+ A1) —16Xs,
which implies
M (h) = —2rh[h(M + A3) — A1), h <0, (43)
Mi(h) =2n(h — D)[(h —1)(AM1 + A3) + M+ A3 —2X5], h> 1. (44)

As expected My # M; which allows to construct at a first order all possible distri-
butions (7, ) of limit cycles, such that ¢ < 1,5 < 1.

4. The Second Melnikov Function: Analytic Computation
Let
x? + y?

(2y—1)
be the first integral of Xy, see (). On each level set

Iy, = {(x,y) € C*:H(z,y) = h}
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holds
IQ + y2 = h(2y - 1)7
2? + (y—h)? =h(h—1).

The real level sets {(z,y) € R?: H(z,y) = h}, h € R, are therefore circles centered
t (0,h) of radius R = y/h(h — 1). The critical values of H are h = 0 and h = 1.
The two period annuli are

{(z,y) € R*: H(x,y) <0}, {(z,y) € R*: H(x,y) > 1}.

Note that the symmetry o : y — 1 — y induces o*(H) = H — 1. Recall from Sec.
that 'y, is a four-punctured Riemann sphere, uniformized by the complex parameter

z=uz+i(y —h),
where
r—i(y —h) = R?/z.

I'y, is therefore identified with the complex z-plane with three punctures at a, b, c
where

a=—ih, b=—i(h—1), ¢=0 and R*= —ab

see Fig.[Bl In what follows, as in the preceding section, w is the differential one-form
(2D, but under the condition that

/ w=20

o(h)

/ w=0.
5(h)

The loops 8,6 are represented by circles surrounding a,c or b, ¢, respectively, see
Fig.[Bl The one-form w is holomorphic on I'y, and has poles at z = a, b, ¢, .

Our purpose is to compute the second Melnikov function of the perturbed equa-
tion dH — w = 0 (the 1/2 factor of H was skipped for convenience).

or

4.1. Computation of the perturbative part in new coordinates

In the normal form, the perturbative part can be written as

xdy — yda (z* +y*)dy (2 +y*)dz

2y-12 T y-12 7 (2y-1)

2zydy — (22 — y?)dx
2y —1)?

(22 — y?)dy + 2xydx

+ A4 + A5
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If we assume that Mj(h) =0, then \y = A3 =0 so

w = w2 + Aws + Asws

_ ) (22 + y?)dy A (22 — y?)dy + 2wydx
Tly-1r T -1y
A 2zydy — (22 — y?)dx
’ (2y —1)?

It is easily verified that
C? — C?:(x,y) — (2,h), h=H(z,y))

is a bi-rational transformation of C2. Therefore, we can use z,h coordinates to
express dH —w and compute the corresponding second Melnikov function. We have

(22 — R?) 12h—1

dx = 5,7 dz + 57 dh,
dy = - A Gt
y = 55 (=" + R?)dz + dh.
We get by simple substitutions:
Py i (Poab)’
-1 §EG-aG - bP
12— oz = o)
R T dh,
y2dy :_i[(zfa)(sz)+iz]2(z27ab)dz
(2y* 1)2 8 [z(zfa)(sz)]Q
1[(2*0)(2*b)+iz]2(z )

"1 Z[(z —a)(z — b)]? dh,
2y 1P -a)EPraz-a)z-b)+id
Cy—1p7 i 2= )z =P

(2h —1) (22 —ab)[(z — a)(z — b) +iz]
4i z[(z—a>(2_b)2 dha
2zy _ 1(22 —ab)?[(z —a)(z — b) + iz
@Y1 Re-aG-oF
1 (22— ab)(z — a+b)[(z )(z —b) +iz]
ud 1((z2 —ab)® + (= a)(z ) + i2]2)(2% + ab) "
2h—1 (2" *wV+Kszw4wa42
8 A= a)(z - b dh-
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4.2. The second-order Melnikov function defined by an iterated
integral

From w = Fdz + ®dH, we get
dw = (Fj; — ®')dHANdz.
The Gelfand-Leray derivative of w is defined (modulo dH) by
W' = (Fy — ®)dz.

The associated second-order Melnikov function is defined as the iterated integral

(of length two) (cf. [1I7, 10} 12])
My(h) = —/ww’. (46)

From previous calculation the only terms which contribute effectively are:

My(h) = — ( / wawl, + / w5w’2) A2)s. (47)

The main result we show here is that such an iterative integral can be computed
by residues. For this purpose, we have first to compute wy,ws and wh,w) in the
coordinates (z,h) and to determine their partial fraction decompositions.

We recall an important formula (particular case of the shuffle formula see [17])
for any couple of one-forms wq, w1:

/w0w1 +/w1wo = /wo-/wl- (48)

In particular this yields that if [wy =0 or [w; =0, then

Jwnor == [wen. (49)

4.3. Computation of w2 and its derivatives

We note that

1 _hdy 2?4 y?
wy = shd(In(2y — 1)) = 5y 1= oy 1)2dy, (50)

and thus we get

oy = =
2y — 1
1 2 2 [ — =3
= — R%)d —=—dh. 51
ey D¢ TREY S5 (51)
If we change coordinates (z,y) into (z, h), we obtain
22 —ab (z — atb)
=h dz +i 2 ——dh 52
RS P Ty L ey ey A S (52)
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and thus:
w2 = FQ(Za h)dZ =+ ¢2(zvh)dh7
with
h 1 1 1
F. h)=—|—— —
2(z.h) 2{ z+z—a+z—b}’
ih 1 1
P h) = — .
2(2, h) 2[z—a+z—b]
We see that

/WQ = / FQdZ =0.
H=h

The shuffle formula implies for instance:

/LL)QWQif/UJQWQ:O.

4.4. Computation of ws and its derivatives in the coordinates

(2, h)
We change coordinates (x,y) into (z, H), this displays:
1 (2% + R?) —i 2% + 2ihz — R?
= 577 Y= > ——_
z 2 z

(22 — R?) 12h—1

dr = 5,2 dz + deh,
dy = —— (=2 + R?)dz + =3,
2iz2 z '
We focus on:
e 2zydy — (22 — y?)dx
T (2y —1)?
We find
2zy _ 1(2%2 —ab)?[(z — a)(z — b) +iz]
@-P" T Re-aG-F
1 (22 —ab)(z — 4P)[(2 — a)(z — b) +i2]
2i z[(z —a)(z = D)2 ah,
g 1R [ a)(e ) ) a)
(2y —1)? 8 [2(z —a)(z = D)?
2h — 1 (22 —ab)® + [(z — a)(z — b) +iz]?
TS - a)(z - O dh
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We compute now the partial fraction decomposition. The first term of the compo-
nent factorizing dz yields:
1 (22 — ab)? i (22 — ab)?

120G —a)(z—b)]  12G-a)(z -

ifwglw{l . 1}

ab a(a—b) bla—1b) 1 1 1
— tat+b+z||-— +
z z—a z—0b z z—a z-—0b

BN

i

%I»—‘

pplr—'

(61)
Then we consider
1 (2% —ab)?)(2* +ab)

1 1 2(a? + b?)
8 [z2(z—a)(z—0b)2 8

a—>b

1 ab ala+b)  bla+b)
XL—@ z—b}+z2+(z—a)2+(z—b)2}
(62)

1

and
1[(z —a)(z —b) +i2]?(2? + ab)
8§ EG-ak-bP
l{jLab}Jri 22 +ab 1 2% +ab
8 dz(z—a)(z—b)]  8[(z—a)(z—b)*
which gives for its partial fraction decomposition:

1 a+b 1 a+b 1
1 _
8[+2 [z+abza abzb}

n 4ab 1 _ 1 . a_b
(a=b)P \z—a 2z-0b 22
B a®+ ab 1 B b% + ab 1
(@a=0)?(z—a)?* (a—10)?(z—0)?
We define the two rational functions:

ws = Fsdz + ®5dh, (64)

- (63)

and so the previous decomposition gives:

P SR LR

z z—a z—2b

h(h—1)[1 1 (h—1)2 1
2 L_2+ (z—a)J 2 (z—0b)?
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From this, it is possible to compute by derivation:

1 1 1
Fl, =—i|-—
oh l[z z—a z—b}

1\ 1 1 1 1
<h§>z_2§m2(hl)(z—b)2

+ih(h—1)

(z—a)?
The first contribution to ®5 is
i [(22 + R?)[(z +ih)(z +i(h — 1)) +iz)](z + 3i(2h — 1))}
2 z[(z +ih)(z +i(h — 1))]? '

and its partial fraction decomposition is:

l ; 2h—1l_2h—1 1 +2h—3 1
2 2z 2 z+ih 2 z+i(h—-1)
Lih 1 i(h—1) 1
2 (z+1h)? 2 (z+4i(h—1))2 [

The second piece is:
(2h —1) {[(22 + R+ [(z +ih)(z +i(h — 1)) + 12]2]}
8 z[(z +ih)(z +i(h — 1)]? ’

and its partial fraction decomposition gives:

. _ _
All together, the sum of the two pieces is:
1 2h—1 2h-—1 2(h—1)
Py = — |i -
0 {Hr z z+ih  z+i(h—1)

(2h—1) [1 1 1 ih i(h—1)

ih(h —1) i(h—1)?

(z+1h)?2  (z+i(h—1))2]"

4.5. Computation of — [ wsw)

We begin by the observation that

1.1 1 1
wé:i[ig z—a+z—b]dz+.“(dH)’

/ wh =0,
H=h

hence we can apply the shuffle formula and obtain

7/&)5(.«.)/2 = /w§w5.
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This displays:

/, _/1 1+ 1 n 1 d
Wats = 2 z z—a z—2b s
i(h —1 1 1 1 1 1 1
_ K )/ -+ +——|dz |- — + dz
2 z z—a z-—Db z z—a z-—0b
Jr1/ 71+ 1 n 1
2 p=nl 2 z—a z-0

x{%z+h(h—1)E+ ! ]+(h_1)2 ! }dz. (72)

zZ—a 2 z—0b

Note that the second expression can be readily computed by residue. The first
component breaks into four pieces that we compute by the shuffle formula:

/Hiia}dz[%zia}—ov (73)
R e Iy e L B R
/[Zlb]dz[zlb]dz: . 75)

This gives the contribution:

—i(h—1) [/H_h (% + Zia) Log(z — b)dz

= —i(h — 1)(27i)[~Log(~b) + Log(a — b)]
= 27(h — 1)[~Log(—i(1 — h)) + Log(—1)]
= —21(h — 1)Log(1 — h). (76)

The last component contributes to the sum of residues:

v wh(h—1) wh = 5 1
—h——— 4+ ———(h—1 — +1 7
2 2 i 2 2( ) (h -1 + )’ (77)
and all together this holds:
— /wswg = 7(2h — h?) — 2r(h — 1)Log(1 — h). (78)
4.6. Computation of — [ waw}
We begin with the expression of wj:
ws = (Fyp, — @5.)dz, (79)
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and thus:
- /wag = —/ngghdz—i—/FQ(%dz. (80)
The second integral can be computed by residues and this yields:

/ h 1+ 1 . 1
Hen 2| 2z z—a z-0

L[, 2h—1 2h-1, 2(hi-1)
2 z z+1ih = z+i(h—1)

(z+ih)?  (z+i(h—1))2]"

ih(h—1) i(h — 1) } 1)

This term gives the contribution:

Ih2(2h -1

S —mh(h—1) [LH] +gh2(h—1)—gh(h—1)2+gh. (82)

h—1

We consider now:

1 1 1
_/WzFéhdZ:i/w2 {;_za—i—zb}d'z

1\1 1 1 1
_ _ ) 4z 1)
/w2Kh 2)Z+22a+2(h )

h(h—-1) 1 (h—1)2 1 }dZ.

—1i —1i

2 (z—a)? 2 (z—a)?

(83)

The first term:

. 1 1 1
1/w2[;za+zb]dz’ (84)

can be computed using the shuffle formula as it was done in the previous paragraph
and it yields:

ih 1 n 1 n 1 d 1 1 n 1 d
2 z z—a z—0 * z z—a z-—Db *

= 2rhLog(1 — h). (85)
The other terms can be computed by residue and their contribution is:

h(h — %) mh 1 T2
T + + 2mwh(h )[h 1—|— ] 2h(h )

- gh(h 1) {1 + (h—%)?}
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The sum of the two contributions:

7 h%(2h — 1) 1 T T
S ah(h—1) | —— 41| + =h*(h—1) — =h(h—1)>+ =h
R )[h—1+]+2 (h=1) = 5h(h=1)"+
h(h—1%) 7h 1
—Wﬁ+7+2ﬂh(h—1)|:ﬁ+l]
s ™ 1
—Zh*(h—1)— =h(h—1)* |14+ ———
- 1) = Thin =1 |14 (56)
gives:
2mh?. (87)

To conclude we have proved the following theorem.

Theorem 5. The value of My(h) is
My (h) = [7(2h — h?) — 2m(h — 1)Log(1 — h) + 27 (h)Log(1 — h)
+21h% Ao s

h2
=27 h =+ 7 =+ LOg(l — h) )\2)\5.

It should be possible to obtain directly, by the same type of computations,
the identity (@6]). We prefer to deduce it by an independent proof based on the
monodromy of the second bifurcation function.

5. The Second-Order Melnikov Function: Geometric Computation

In this section, we describe the geometric counterpart of the computations of the
preceding section. By abuse of notations, denote by

8(h),0(h) € w1 (T, *) (88)
the continuous families of simple loops whose homology classes (denoted with the
same letter) were considered in Sec. B and such that

2, .2
_ 2.7ty
5(h) = {(:c,y)ER G

:h} h <0,

2,2
_ 2, Y
5(h){(x,y)ER S h}, h>1.

Assuming that [, sy W = 0, we define the second-order Melnikov function My

associated to (0,0) by the iterated integral Ma(h) = fa(h) ww'. If on the other
hand |; Sy W = 0 then the second-order Melnikov function associated to the center
near (0,1) is Ma(h) = fS(h) ww'. Tt is known My, M, satisfy a linear differential
equation of Fuchs-type [I7]. We are interested in the monodromy representation of
My, Ms. For this purpose, we need the orbit Os of the closed loop §(h), that is
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to say the set of free homotopy classes of loops, obtained from §(h) by “analytic
continuation” with respect to the parameter h. The homology group Hy(Os) is just
the set Oy, but with a group structure, given by composition of loops. There are
many ways to compose two closed loops, but we consider two different compositions
as representing the same element of H;(Os), which is achieved by taking a quotient
with respect to the commutators [O, 71 (T, *)].

The main geometric fact about Ms is that the map

§— /ww’
5
is linear on H;(Os), that is to say

/ ww’:/ ww’—i—/ ww'.
51002 o1 02

Therefore the monodromy of Ms is represented on Hi(Os) which will be enough to
deduce the explicit form of My, and therefore another proof of Theorem

In Sec. 5.1l we compute H1(Os) and Hi(Oj). This computation is independent
from the rest of the paper. The computation of Ma, M, is carried out in Sec.

5.1. The homology H1(Os) of the orbit Os of the closed loop &

The first return map of X, A ~ 0, constructed along a closed loop
6 =6(h) C{H(z,y) = h}

of Xy in a complex domain defines a germ of analytic automorphism C,0 — C, 0.
The dominant term of the return map with respect to parameters ), the so-called
Bifurcation function, is an iterated path integral along §(h), which depends on the
free homotopy class of the closed orbit §(h) in the leaf { H(x,y) = h}. The variation
of §(h) with respect to h defines an orbit Q5. The monodromy representation of
this Bifurcation function is then constructed on the so-called “homology Hy(Ojs) of
the orbit of §” which is the purpose of the section.

More precisely, let 6(h) € m1(T),) be a free homotopy class of loops, depending
continuously in the parameter h. The fundamental group 7 ({h € C:h # 0,1}, ho)
of the set of regular values

{(heC:h+£0,1}

acts on the permutation group Perm(7 (T, )) of homotopy classes of closed loops
on 7 (Tp,) and let O = Os C w1 (T'p,, *) be the smallest normal subgroup containing
the orbit of §(hg) under this action. The homology of the orbit O is

H{(Th,,Z) = Hi(0) & 0/(0, 1 (Thy, %)

where (O, (T, *) is the commutator subgroup. For details see [I'7, [19], where
it was first defined. In what follows, we use the notation H;(O) introduced in [27]
and we call it “homology of the orbit”. The importance of H;(O) lies in the fact
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that the monodromy representation of the bifurcation function, in particular of the
second Melnikov function Mo, is a sub-representation of

m({h € C:h #£0,1}, %) — Aut(H1(0))

this will be used in the following section.
The purpose of the present section is to compute the homologies

H,(0s), H1(O5),

where

5(h),8(h) C Ty, = {(;C,y) €C?: fyﬂf - h}

are the continuous family of closed loops, vanishing at (0,0) and (0, 1) when h tends
to 0 or 1, respectively. When h € R, the two families of closed loops d(h), d(h) form
the nests of periodic orbits shown on Fig. [l The Riemann sphere I';, has two
punctures over y = 1/2, and denote the two simple loops making one turn around
each of these punctures by a(h),3(h). We may suppose that a(h),3(h) have a
common starting point, so we can define the commutator (a, 3) = =!8 1aB. The
choice of this starting point will be irrelevant to the final result, which can be

formulated as follows.

Theorem 6. The homology Hy(Os) is a free Z-module with two generators 6 and
(o, B) = a7 rap. Similarly, the homology H1(Oj) is a free Z-module with two
generators 0 and («, 3) .

The proof will be given later in this section. Note that only the free homotopy
classes of a, 3,9,9, specified on Fig. [3 are relevant to the above statement. The
proof of Theorem [f is based on the algebraic Lemma [ which we discuss first. For
generalities on free groups see e.g., [23)].

Let G be the free group generated by three letters «, 3,vy. We consider the
normal subgroup H C G generated by the words

B, (o, ),

where (o, 3) = a~1371af is the commutator of «, 3.
For words z, w € G we denote % = w~'zw. For arbitrary words wy, wa, w3, w4,
let H C G be the normal subgroup of GG generated by the words

By (@, 5.
Lemma 7. With the above notations H = H.
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Proof. Let (H,G) be the commutator subgroup of H, generated by commutators
(h,g) = h=tg~thg where h € H,g € G. For wy,ws € G, we have

(0, 572) = (o, gy

so we may suppose that the word wy is void, and consider the commutator («, %)
for some w € G. We have

(@, 87) = (o, B),

(o, %) = (o, )" = (a, ) mod (H,G),

(o, 87) = (a,7'By) = (a,y"'98) mod (H,G)
= (o, ) mod (H,G).

Q,

It follows by induction, that for every word w € G holds
(a, ") = (a, ) mod (H,G) (89)

and therefore (o, %) € H. Similarly, g¥1%2 = (67w2wf1)w1 and we may assume
as above that w; = 1. We have

577 = (By)° = By mod (H,G), (90)
By =a "t afa” BT By«

= (a,3) + By mod (H,G), (91)
By = B (92)

It follows by induction that for every word w € G holds
By = By +k(e, 8) mod (H,G), (93)

where k is an appropriate integer, and therefore gy* € H.
Thus H C H and in a similar way one shows that H C H which implies H = H.
O

Corollary 1. According to Lemmald the free Abelian factor group H/(H,G) gener-
ated by B and the commutator (o, 8) depends in fact only on the conjugacy classes
of the letters ., 3,7.

We shall apply Lemma [7] in the following geometric situation.

Using the notations of Sec. Bl let I'y, is the four-punctured Riemann sphere
identified to the complex z-plane C, with coordinate z = x4 i(y — h) and punctures
at a = —ih,b = —i(h — 1),c = 0. It is seen that a,b € C are arbitrary constants
subject to the relation b — a = i, see Fig.
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Let

a767776:7a7 SZB’YEWl(Ph»*)

be such, that their corresponding free homotopy classes are represented by the
closed loops denoted with the same letter on Fig. Bl As in Lemma[7 let G be the
group generated by «, 3,7, H its normal subgroup generated by ¢, («, 3).

Proof of Theorem [6l We shall prove that O; = H. When h € (0, 1) is close to
1, and then makes one turn around h = 1 along the path
his14e“(h—1), ¢€0,27]

the resulting free homotopy class 6(1 4 2™ (h — 1)) equals 0(h), so its variation is
trivial. When h € (0, 1) is close to 0, and then makes one turn around h = 0 along
the path

hi e®h, ¢ €[0,2n]

we find, according to Fig. [ that 6 = B~ undergoes the following monodromy
transformation:

0= py— falya
and according to ([@3))
palya=a"t-afa BT By o= (o, f) + By mod (H,G).

It remains to compute the monodromy of the commutator («, 3). By analogy to
Fig. @ we find that (o, 3) undergoes the transformation

(0, B) = (a, 7™ B)
and according to (89)
(,77'87) = (o, f) mod (H,G).
This completes the proof that O; = H and hence
H,(05) = H/(H, G).

The computation of H;(Ops) repeats the same arguments. O

5.2. The monodromy of the second Melnikov function

Recall that, under the condition that the first Melnikov function f sy ¥ is identically

zero, we have for the second Ms(h) = 4 [;ww’ where § = o as it is shown on
Fig. Ml Clearly, Ms is analytic near h = 0 and analytic on the domain

{h € C}\[1, 00).

It allows an analytic continuation along the universal covering of C \{0,1}. When h
makes one turn around h = 1, according to Fig. @ and formula (@T]) the monodromy
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\
),

o

RO
O 7~y

el By J

e ) -

5 =~ | ko

Bk offo

Fig. 4. The monodromy of the closed loop §(h) = [(h) o vy(h) when h makes one turn around
h=1.

of ¢ as an element of Hy(Os) = Z6 + Z(«, 3) is
5 6+ (o).

On the other hand, («(h), S(h) have no monodromy at all, see (89). Therefore
/ ww' = P(h) + Q(h)In(1 — h),
5(h)

where P, () are rational functions in A with eventual pole at h = 1, and moreover

2miQ(h) = / ww'.
(a(h),B(h))

Of course, similar considerations are valid for the family of loops S(h) Namely,
under the condition that fS(h) w =0, we have

/ ww' = P(h) + Q(h) In(h),
5(h)
where P, Q are rational functions in h with eventual pole at h = 0, and moreover

2miQ(h) = / ww'.
(a(h),B(h))

The iterated integral along the commutator (o, 3) = a~!f~taB is however
easily computed by standard properties of iterated integrals, e.g., [I7, Lemma
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A.2], so we have

J= ]

w W'
B B

/ ww' = det
(a,8)

By (&I) and (64]), we have that along '),

h 71+ 1 n 1 d
w279 2 2—a z-0)%
1 1 1 1
S 0 W e
“o [2 i )<z z—a+z—b>

S (3_2 " (zla)Q) B (h_21)2 (zlb)Q} =

Recall that «, 8 a simple loops around a = —ih and b — i(h — 1), respectively.
Residue calculus implies that for w = Asws + Asws holds
1 hA 1
— [ w= T2+i(h—1))\5,—,/w: 222 i(h—1)As
B

2mi J, 2mi

and taking into account that

/ W = i/ w / W = i/ w
a(h) dh Jamy  Jan dh Jamy

/ ww' = —4m%iXo 5. (95)
(a,8)

we conclude that

Therefore
/ ww' = P(h) — 2w A2 A5 In(1 — h).
3(h)

As expected the coefficient of In(1—h) is quadratic in A; and is therefore a generator
of By, that is to say A2 As. In particular, it should not contain A4 so the formula ([O5))
is also valid for

W = Aows + A\qws + Asws.
Similarly, the condition M; = 0 implies A\; + A3 = A5 = 0 and hence for

w = Aaws + A3(ws — w1) + Aws

/ ww' = —47%i 3\,
(er.8)

which on its turn implies

(96)

/ ww' = P(h) — 2w AsAs In(h).
5(h)
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To compute P(h) we use asymptotic analysis. It can be verified that the mero-
morphic function P(h) has no poles on the finite plane, and grows at infinity no
faster than h? (we skip the proof). From this already follows that P(h) is a polyno-
mial of degree at most two. To find its coeflicients we use the following proposition.

Proposition 8. The second Melnikov function My = 4];;(}1) ww' has a zero at
h =0 of multiplicity at least three.

Indeed, assuming the Proposition, by the expansion

h2
(1~ h) = ~h— =+

we get P(h), and hence the main result of this section

h2
/ wo! = 2o\ (h + P ma - h)), (97)
5(h) 2

which agrees, as expected, with Theorem

Proof of Proposition [8. A local analytic change of the variables in a neighbor-
hood of (0,0)

€T Y

—_— —_— 98
Y T Y (98)
brings the Hamiltonian H = x;ytyf to the form H(z,y) = —2? — y?. To compute

/ ww'
{H=h)}

we may suppose that Ay = A3 = A\y = 0. The differential

(2 +y?)dy 2xydy — (2% — y*)da
Cy—12 "7 (2y—1)?

in the new coordinates (@8] takes the form

w:>\2

3
w = —Xo(x? +y*)dy + Asd (acyQ - %) +0(4),

where the O(4) replaces some analytic differential one-form Pdx+ Qdy, where P, Q,
vanish at the origin(0,0) of multiplicity at least three. We have therefore

3
w = —Asd(Hy) + Asd(zy® — %) + AoydH + -

W= Xody + - -
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and

/ ww' = /\2/ yw + O(5)
(H=h) {H=h}
23

= /\2/\5/ y d(zy? — =)+ O(5)
{H=h} 3

= // (y? — 2H)dy dz + O(5) = O(5).
{z24+y2<—h}

As deg H = 2, then homogeneity considerations show that O(5) = O(h?) so
Mz (h) = O(h?). O

6. Blow Up of a Direct Product of Ideals

Let C{\} be the ring of convergent power series at A = 0, where (A1,...\,) € C",
and

B=(v1,...,on) C C{\}
be an ideal with zero set
Z(B)={Ae (C",0): v1(\) =v2(N) = ... =vn(N) =0}.

The blowup 'z C (C",0) x PN~ of (C™,0) with center B is the analytic closure of
the graph of the map

C"\Z(B) — PN~!
A= [or(A) - ron (V)]
with projection on the first factor
7p:T' C (C",0) x PY~1 — (C",0).

Here, [v1(A): -+ :on(A)] is the projectivization of (vi(A),...,vn(A)). The excep-
tional divisor

Ep=7n"10) cPV!

is therefore a well defined closed algebraic set. The importance of Eg lies in the

fact that it is in bijective correspondence with the projectivized set of bifurcation

(or Melnikov) functions, computed in the preceding sections, see [I1], Corollary 2].
Suppose that By, Ba € C{\} be two ideals

Bl = (Ui,"',U}l\rl),

By = (vf,--,0%,)
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and consider the direct product
B =B; x By C C{\} x C{\}.
We note that B is also an ideal and consider the corresponding blowup
'z C (C",0) x PM1—1 5 pNa—t
defined as the analytic closure of the graph of the map
C™\Z(B) — PN1=1 x pN=—1
N ([EO): - 2ok OO [0E (V) -+ ok, V)
with corresponding exceptional divisor
Ep,xp, =7 (0) C PN x P2l
To the end of the present section, we compute Ep, x5, in the case when
By = (v (A),v3(N),v3(N)) = (A1, Az, A2 As),
By = (v} (A), v3(N), 03 (A)) = (A1 + Az + Aid2, As, Agha).
It follows with same proof as [I1l Corollary 2] that

Proposition 9. The projectivized set of pairs of Melnikov functions computed in
the preceding section are in bijective correspondence with the points on the excep-
tional divisor Eg,xp,-

The main result of the present section is
Theorem 10. The exceptional divisor
Ep, x5, C P? x P?

has three irreducible components as follows:

{([ex ez eslfel s c3c3)) s ef = e =0}, (99)
{(fex ez eslfef s c3:c3]) rel + ey = 0,5 =0}, (100)
{(fex ez esl[cf o c3: c]) 1 e3 = 3 = 0} (101)

Proof. A point (Pi, Py) € (P2,P2) belongs to E, x5, if and only if there is an arc
e A(e) = (M(2),- .., As(2)), A(0) = 0 (102)
such that the vector
([v1(A(e)) = v3(A€)) = v3 ()], [E (A(€)) = v3(A(€)) = w3 (A(e))])

tends to the vector (Py, P2) as ¢ tends to 0. It is easy to show now that the com-
ponents ([@9)—(I0I) belong to Eg, x5, For instance, for ([I00) we may consider the
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family of arcs
e Ae) = (6,62, —e + AJe?, —\e, Ade?)
and then

lim ([v1 (A(€)) : v2(A(€)) : v3(AE))], [T (A(e)) : v3(A(€)) : v(A(E))])

e—0
=([1:=1:0,[A3: A2 A9)).

The other inclusion are also obvious.
Next, we consider an arbitrary arc (33]) and we must show that

lim ([v1 (A(€)) = v2(A()) = v3(A))]; [v7 (A(€)) = v3(A(e)) : w5 (A(e))])

belongs to one of ([@A)-(0T]). For this purpose we note that for fixed Ao, A4, the
generators v} of By, By are linear homogeneous in Aj, A3, A\5. Therefore, we shall
consider separately each of the cases

di = min d;,ds = mln dl,d5 = min d;,
1,3 1,3,5

1=1,3,5 i= i=

where
A= 0(@EM), A3 = 0(e®), A5 = O(e®).
e The case di = min;—1 35 d;. We put
AL =A0e® 4+ A= AJe® 4 X5 = Ae® +
and hence

lim[A1 2 g Aads] = A : A 0).

Er—
If A\; + A3 = O(¢™) then
111%[)\1 + )\3 + )\1)\2 : )\5 : )\3)\4] = [*, *,O]
E—

and therefore the limit is in the set (IOI). If, however \; + A3 = O(e%) where
dy > dy, then

lir%[)\l S A3 A5 =[1:—1:0]

Er—

and the limit is in the set (I00]).
e The case d3 = min;—; 35 d;. We may suppose in addition that ds < dy (otherwise
we are in the preceding case). Then we check immediately that the limit is in the

set (IOI)).
e The case d5 = min;—1,35d;. We may suppose in addition that ds < d; and
ds < d3 (otherwise we are in one of the preceding two cases). Therefore

111%[)\1 + A3+ A Ao A5 )\3)\4] = [0 21 0]
Er—
and we are in the case (@9).

This completes the proof of Theorem O
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7. Distributions of Limit Cycles

In this section, we determine the possible distributions (i, j) of limit cycles of small
quadratic deformations (@) of the quadratic vector field () on the finite plane R2.
This excludes the limit cycles, which bifurcate from “infinity”.

Definition 4. We say that the germ of a family of vector fields X, 4
i=—y—a®+y°+ Z agz'y’,
0<4,j<2

Xaub: C

“ y=x—2xy — Z by’
0<4,j<2

has an admissible distribution (i, ) of limit cycles, if there is a sequence (ay, bi )
in the parameter space {(a,b)} such that for every sufficiently big R € R the
following holds true: every vector field X,, 5, has exactly ¢ limit cycles sur-
rounding the equilibrium point near (0,0), exactly j limit cycles surrounding the

equilibrium point near (0,1), and these limit cycles are contained in the disc
{(z,y) e R?:||(,yll < R}.

The maximal value of i is therefore the cyclicity Cycl(Il1, X,p) of the
open period annulus containing (0,0), the maximal value of j is the cyclicity
Cycl(Ilz, X, p) of the open period annulus containing (0,1), and finally

maxi + j = Cycl(R?, Xq5).
i.J
Recall that the cyclicity Cycl(Il, X,5) of an open set II C R? with respect to the
germ of a family of vector fields X, ; is, roughly speaking, the maximal number of
limit cycles which bifurcate from an arbitrary compact set K C II when a,b ~ 0.

For a precise definition see e.g., [16, Definition 3].
The main result of the paper is.

Theorem 11. The distribution (i,j) of limit cycles is admissible if and only if
i+j<2.

Proof. Without loss of generality, we replace the germ of families X, ; by Xy,
see ([0). The first return maps Py, P2 parameterized by the restriction h = H (z,y)
of the first integral on a cross-section to the annulus IT; or II; can be divided in
the corresponding ideals [BI) and (32) as follows:

Pi(hs N)(h) = h = vi(A) (M (h) + O(N)) + v3(X) (M3 (h) + O(N))
+ug(\) (M (h) + O(N)),

PL(h; N)(h) = h = v} (A) (M7 (h) + O(N)) + v3(N) (M3 (h) + O(N))
+o5(\) (M5 (h) + O(N)),

where the Melnikov functions MZJ were computed in the preceding sections. It fol-
lows, with same proof as [I8 Theorem 1] that if (¢, ) is an admissible distribution
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of limit cycles for X, then there exists a germ of analytic arc
e Ae), e € (R,0), XO0)=0

such that the one-parameter family of vector fields X)) allows a distribution (4, j)
of limit cycles, for ¢ close to 0. For such an arc we obtain

Pi (h; M€))(h)
Pi (h; M€))(h)

(el M1 (h) + c3M; (R) + 3 M3 (h) + O(¢)),

—h=c¢
— h =" (I M7 (h) + 3M3 (h) + M3 (h) + O(e)).
Therefore to compute the distribution (4, 7) of limit cycles we have to compute the
number of zeros ¢ and j of each admissible pair of bifurcation functions

et M1 (h) + e3M3 (h) + cs M3 (h), IMF(h) + 3 M3 (h) + c3 M3 ().

According to Sec. [0 and [@3]), (@), the bifurcation function associated to the first
period annulus is co-linear to

hlci(h — 1) + cyh] + cAMa(h)
and the bifurcation function associated to the second annulus is
(h = D)le(h — 1) — 23] + AT ().
According to [T}, Corollary 2] the admissible pairs of vectors
[el ey :cd),[ch:ck:c3) € PP
are in one-to-one correspondence to the points on the exceptional divisor
Ep, x5, C P? x P?

described in Theorem We consider each of the three irreducible components of
EB, xB, separately.

In the component ([@3) we have ¢§ = ¢ = 0 so the bifurcation function associated
to the second annulus Il5 is co-linear to h — 1. Thus no limit cycles bifurcate from
II; and at most two limit cycles bifurcate from IT;.

In the component ([00) we have ¢ + ¢3 = 0, ¢3 = 0 and hence the bifurcation
function associated to the first period annulus II; is co-linear to h. Thus no limit
cycles bifurcate from II; and at most two limit cycles bifurcate from Ils.

In the component ([[01]) we have c¢3 = ¢2 = 0 and hence the bifurcation functions
associated to the period annuli are co-linear to

hlet(h — 1)+ ¢c3h], (b —1)[c3(h—1) — 2¢3].

Therefore in each period annulus at most one limit cycle can bifurcate. This com-
pletes the proof. |
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8. Conclusion and Perspectives

In this paper, we have computed the double Bautin ideal associated to the bifur-
cations of the Lotka—Volterra double center with respect to arbitrary quadratic
deformations. Our approach is based on the expression of the second-order bifur-
cation function in terms of iterated path integrals and on the shuffle formula. We
also provide a geometric approach based on the “homology of the orbit” description
of the monodromy of the second-order bifurcation function of independent inter-
est. Our main result allows to prove that the second-order bifurcation function is
enough to compute the double cyclicity. Although we recall that the methods we
have used do not allow to keep track of all the limit cycles which are born at the
boundaries of the period annuli. This issue has been addressed in several other
bifurcation settings [0, [0, 19, 20]. This is certainly an interesting perspective for
further researches. Another important perspective would be to try to extend the
outline of a general bifurcation theory of plane systems of infinite co-dimension that
we have introduced here, in particular to other reversible quadratic double centers.
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