On the Saito number of plane curves.

Yohann Genzmer and Marcelo E. Hernandes*

Abstract

In this work we study the Saito number of a plane curve and we present a method to determine the minimal Saito number for plane curves in a given equisingularity class, that gives rise to an actual algorithm. In particular situations, we also provide various formulas for this number. In addition, if ν_{0} and ν_{1} are two coprime positive integers and $N>0$ then we show that for any $1 \leq k \leq\left[\frac{N \nu_{0}}{2}\right]$ there exits a plane curve equisingular to the curve $$
y^{N \nu_{0}}-x^{N \nu_{1}}=0
$$

such that its Saito number is precisely k.
Keywords - Saito number, Saito module, planar foliations, plane curves. MSC 2024-14H20; 32S65, 14B05

Introduction

In his seminal article on the theory of logarithmic differential forms [18], K. Saito noticed that, in dimension 2, the module of logarithmic differential 1 -forms leaving invariant a given germ of complex plane curve C is always free of rank 2 . Nowadays, known as the Saito module of C and denoted by $\Omega^{1}(\log C)$, it appears somehow to encode a certain amount of information about the curve itself. Of special interest are the valuations of these logarithmic differential 1 -forms and, in particular, the minimal valuation called the Saito number of C,

$$
\mathfrak{s}(C)=\min _{\omega \in \Omega^{1}(\log C)} \nu(\omega) .
$$

In a series of articles, the first author studied the Saito number of a generic curve in its equisingularity class $[8,9,10,11]$, and as a product established various formulas or algorithms to provide the number of moduli of C. In [12], the two authors

[^0]highlighted a link between the Tjurina number of C and its Saito number, still in a generic situation. Recently, in [4], F. Cano, N. Corral and D. Senovilla-Sanz derived from an algorithm introduced by Delorme [7, 15], a procedure to construct a basis of the Satio module for an irreducible curve whose has only one Puiseux pair. Moreover, in [1], for a generic irreducible curve, P. Fortuny Ayuso and J. Ribon proposed an algorithm that leads to the computation of a basis of the Saito module. Today, the situation is ripe for further study of the non-generic case and this is the main goal of this article.
In the first section, we study the minimal Saito number in a given equisingularity class $\operatorname{Top}(C)$, which somehow, corresponds to the less generic situation. We prove the following

Theorem 1. Let C be a germ of complex curve in $\left(\mathbb{C}^{2}, 0\right)$. Let b be the number of punctual blowing-ups in the minimal desingularization process of C. Then, there exists an algorithm whose complexity is $O\left(2^{b}\right)$ that provides the following minimum

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)
$$

and the topological data associated to a 1-form reaching the above lower bound.
The equisingularity class $\operatorname{Top}(C)$ of C is naturally stratified by the Saito number of its curves. In the second section, we prove that, in the one Puiseux pair case, as well as in some non-irreducible situations, the Saito numbers reach any value between its minimum and maximum value inside a given equisingularity class. As an example, we prove the following result

Theorem 2. Let C be the curve given by the equation

$$
y^{N \nu_{0}}-x^{N \nu_{1}}=0
$$

where $1 \leq \nu_{0}<\nu_{1}$ are coprime integers and $N \nu_{0}>1$. Then for any integer k such that

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=1 \leq k \leq\left\lfloor\frac{N \nu_{0}}{2}\right\rfloor=\max _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)
$$

there exists C_{k} equisingular to C such that

$$
\mathfrak{s}\left(C_{k}\right)=k
$$

We conjecture that the result above holds for any topological class of plane curve.

1 Minimal Saito number in $\operatorname{Top}(C)$.

In this section, we prove Theorem 1 by identifying a foliation leaving invariant a curve C^{\prime} equisingular to C and reaching the minimal Saito number.

1.1 Dual graph of foliations.

Let E be any process of blowing-ups. The dual graph of E can be numbered by the multiplicities of its irreducible components, defined as follows : the multiplicity $\rho(s)$ of the initial component s is 1 and inductively, if s results from the blowing-up of a point $p \in s^{\prime}$ and $p \notin s^{\prime \prime}$ for any other component $s^{\prime \prime} \neq s$, that is p is a free point, then $\rho(s)=\rho\left(s^{\prime}\right)$; if it results from the blowing-up of the point $p \in s^{\prime} \cap s^{\prime \prime}$, that is p is a satellite point, then $\rho(s)=\rho\left(s^{\prime}\right)+\rho\left(s^{\prime \prime}\right)$. Following the definitions of [16], for a foliation \mathcal{F}, a regular curve C and a point p in C we consider the following indeces : the foliation being given by the $1-$ form $a \mathrm{~d} x+b \mathrm{~d} y \in \Omega^{1}$, where $C=\{y=0\}$, we set

- if C is invariant by $\mathcal{F}, \operatorname{Ind}(\mathcal{F}, C, p)=\nu(b(x, 0))$
- if C is not invariant by $\mathcal{F}, \operatorname{Tan}(\mathcal{F}, C, p)=\nu(a(x, 0))$.

Notice that if \mathcal{F} is singular at p, in any case, both indeces above are strictly positive. A double numbered colored graph \mathbb{A} is a graph where the vertices are colored in black or white and are double numbered. For any vertex s of \mathbb{A} and $\epsilon \in\{1,2\}, s(\epsilon)$ stands for the $\epsilon^{\text {th }}$ index of s.
The multiplicity of a double numbered colored graph \mathbb{A} is defined by

$$
\nu(\mathbb{A})=-1+\sum_{s \in \mathbb{A}} s(1) s(2) .
$$

Definition 1.1. The dual graph of \mathcal{F} with respect to E is the double numbered colored graph $\mathbb{A}[\mathcal{F}, E]$ defined as follows:

- The graph of $\mathbb{A}[\mathcal{F}, E]$ is the dual graph of E.
- If $E^{\star} \mathcal{F}$ is generically transverse to a component, the corresponding vertex is black. If not, the vertex is white.
- Each vertex s is double numbered by

$$
\begin{aligned}
& -\left(\rho(s),-\operatorname{val}_{w}(s)+\sum_{p \in s} \operatorname{Ind}\left(E^{\star} \mathcal{F}, s, p\right)\right) \text { if the vertex is white; } \\
& -\left(\rho(s), 2-\operatorname{val}_{w}(s)+\sum_{p \in s} \operatorname{Tan}\left(E^{\star} \mathcal{F}, s, p\right)\right) \text { if the vertex is black }
\end{aligned}
$$

where $\operatorname{val}_{w}(s)$ stands for the number of white vertices attached to s.
In this formalism, the next property is just Theorem 3 in [16].
Proposition 1.2 ([16]). For any foliation \mathcal{F} and any blowing-up process E, we get

$$
\nu(\mathcal{F})=\nu(\mathbb{A}[\mathcal{F}, E])
$$

Example 1.3. Let \mathcal{F} be the foliation defined by the 1 -form

$$
\left(2 x^{2}+\frac{5}{2} y^{3}-\frac{9}{2} x^{3} y\right) \mathrm{d} y-\left(3 x y-3 x^{2} y^{2}\right) \mathrm{d} x .
$$

Figure 1: Dual graph of \mathcal{F} with respect to the desingularization of C.
It leaves invariant the curve $C=\left\{\left(y^{2}-x^{3}\right)\left(y^{3}-x^{2}\right)=0\right\}$ and it is of multiplicity $\nu(\mathcal{F})$ is equal to 2 . Now, if E refers to the minimal process of reduction of C then the graph $\mathbb{A}[\mathcal{F}, E]$ is in Figure 1. In particular, its valuation satisfies

$$
\begin{aligned}
\nu(\mathbb{A}[\mathcal{F}, E]) & =-1+1 \times 1+2 \times 0+1 \times 1+2 \times 0+1 \times 1 \\
& =2=\nu(\mathcal{F}) .
\end{aligned}
$$

1.2 Construction of foliations with prescribed dual graphs.

Using a method to construct germ of singular foliations in the complex plane introduced by A. Lins Neto [17], we can produce foliations with prescribed double numbered dual graphs.

Proposition 1.4. Let \mathbb{A} be the dual graph of a process of blowing-ups E. Consider a coloration of \mathbb{A} and for any $s \in \mathbb{A}$ a double numbering ($s(1), s(2)$) such that $s(1)$ is the multiplicity $\rho(s)$. There exists a foliation \mathcal{F} and a process of blowing-ups E^{\prime} with the same dual graph as E such that

$$
\mathbb{A}\left[\mathcal{F}, E^{\prime}\right]=\mathbb{A}
$$

if and only the following properties are satisfied
a) for any white vertex $s, s(2)+\operatorname{val}_{w}(s) \geq 0$;
b) for any black vertex s, $s(2)+\operatorname{val}_{w}(s) \geq 2$;
c) for any connected component \mathbb{K} of \AA which is \mathbb{A} minus the black vertices, there exists $s \in \mathbb{K}$ such that $s(2)>0$.

Proof. The direct part of properties (a) and (b) follows from Definition 1.1. The direct part of the property (c) is a classical consequence of the fact that the intersection matrix of E is definite negative [19]. Indeed, if for any $s \in \mathbb{K}, s(2)=0$ then

$$
\forall s \in \mathbb{K}, \sum_{p \in s} \operatorname{Ind}\left(E^{\star} \mathcal{F}, s, p\right)=\operatorname{val}_{w}(s) .
$$

Since for any $s, s^{\prime} \in \mathbb{K}, s \cap s^{\prime}$ is a singular point of $E^{\star} \mathcal{F}$ for which the index $\operatorname{Ind}\left(E^{\star} \mathcal{F}, s, p\right)$ is bigger than 1 , the above equalities ensures that along \mathbb{K}, the foliation $E^{\star} \mathcal{F}$ is singular only at the points of type $s \cap s^{\prime}, s, s^{\prime} \in \mathbb{K}$ with indeces equal to 1 . The latter is impossible according to [5, Proposition 3.1].

Figure 2: Local models of elementary foliations for black and white vertices.

Now, suppose that the properties $(a),(b)$ and (c) are satisfied. The statement relies upon a result of Lins Neto [17] of construction of singular foliations in dimension 2 from elementary elements which are reduced singularity. The only obstruction for such construction is the well-known Camacho-Sad relation [2]

$$
\sum_{p \in s} \mathrm{CS}\left(E^{\star} \mathcal{F}, s, p\right)=-s \cdot s
$$

where $s \cdot s$ is the self intersection of the component s and CS (\cdot) stands for the Camacho-Sad index of the foliation $E^{\star} \mathcal{F}$ with respect to s at p. More precisely, consider s in \mathbb{A} with $s \cdot s=-k$. Locally around the irreducible component s, the total space of E is analytically equivalent to the neighborhood of $x_{1}=0$ in the following gluing model

$$
\begin{equation*}
\left(\mathbb{C}^{2},\left(x_{1}, y_{1}\right)\right) \coprod\left(\mathbb{C}^{2},\left(x_{2}, y_{2}\right)\right) \tag{1}
\end{equation*}
$$

with the identification

$$
y_{2}=y_{1}^{k} x_{1} \quad x_{2}=\frac{1}{y_{1}}
$$

This neighborhood can be foliated by the foliation \mathcal{R}_{s} given in the coordinates $\left(x_{1}, y_{1}\right)$ by the 1 -form

$$
\omega=\mathrm{d} x_{1}+\prod_{i=1}^{s(2)+\operatorname{val}_{w}(s)-2}\left(y_{1}-i\right) \mathrm{d} y_{1}
$$

which is completely transverse to $x_{1}=0$ except at the points $(0, i), i=1, \ldots, s(2)+$ $\operatorname{val}_{w}(s)-2$ where it is tangent at order 1 . The foliation \mathcal{R}_{s} is a local model for a foliation with double numbered black graph presented in Figure 2. The model (1) can also be foliated by \mathcal{G}_{s} given by 1 -form

$$
\begin{equation*}
\eta=\frac{\mathrm{d} x_{1}}{x_{1}}+\sum_{i=1}^{s(2)+\operatorname{val}_{w}(s)} \lambda_{i}^{s} \frac{\mathrm{~d} y_{1}}{y_{1}-i} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{i=1}^{s(2)+\operatorname{val}_{w}(s)} \lambda_{i}^{s}=p \tag{3}
\end{equation*}
$$

By construction, for any i, one has

$$
\operatorname{CS}\left(\mathcal{G}_{s},\left\{x_{1}=0\right\}, i\right)=\lambda_{i}^{s} .
$$

The foliation \mathcal{G}_{s} is a local model for a foliation with double numbered white graph presented in Figure 2. All these local models can be glued together by gluing maps following the dual graph of \mathbb{A}. The property (c) ensures that, along any connected component \mathbb{K} of the graph minus the black vertices, no incompatibility will occur between the relations (3) and the fact that, at any intersection point of two white components s and s^{\prime}, one should have

$$
\begin{equation*}
\operatorname{CS}\left(\mathcal{G}_{s}, s, s \cap s^{\prime}\right) \cdot \operatorname{CS}\left(\mathcal{G}_{s^{\prime}}, s^{\prime}, s \cap s^{\prime}\right)=\lambda_{i_{s}}^{s} \cdot \lambda_{i_{s^{\prime}}}^{s^{\prime}}=1 \tag{4}
\end{equation*}
$$

Indeed, the union of the relations (3) and (4) yields a number of equations equal to

$$
\sharp \operatorname{vertices}(\mathbb{K})+\sharp \operatorname{edges}(\mathbb{K}) .
$$

However, the number of variables involved in the mentioned relations is

$$
\sum_{s \in \mathbb{K}} s(2)+\operatorname{val}_{w}(s)
$$

Following property (c) the above number of variables satisfies

$$
\begin{aligned}
\sum_{s \in \mathbb{K}} s(2)+\operatorname{val}_{w}(s) \geq 1+\sum_{s \in \mathbb{K}} \operatorname{val}_{w}(s) & =2 \cdot \sharp \text { vertices }(\mathbb{K})-1 \\
& =\sharp \text { vertices }(\mathbb{K})+\sharp \operatorname{edges}(\mathbb{K})
\end{aligned}
$$

since \sharp vertices $(\mathbb{K})=\sharp$ edges $(\mathbb{K})+1$. Therefore the system of equations (3) and (4) has always a solution - that can be chosen rational.
As a whole, the gluings lead to a foliation defined in a neighborhood of a divisor \mathcal{D} with same intersection matrix as the one of the exceptional divisor of E. According to a classical result of H . Grauert [14], the neighborhood of \mathcal{D} is analytically equivalent to the neighborhood of the exceptional divisor of some blowing-up process E^{\prime} with same dual graph as E. The latter neighborhood is foliated by a foliation \mathcal{F}^{\prime} that can be contracted by E^{\prime} in a foliation \mathcal{F}. By construction, one has

$$
\mathbb{A}\left[\mathcal{F}, E^{\prime}\right]=\mathbb{A}
$$

1.3 Minimal Saito number of a given topological class of curve.

Let C be a germ of curve in the complex plane defined by $f \in \mathbb{C}\{x, y\}$. The Saito module of C is the $\mathbb{C}\{x, y\}$-module

$$
\Omega^{1}(\log C)=\left\{\omega \in \Omega^{1}: \omega \wedge \mathrm{d} f \in\langle f\rangle\right\}
$$

Saito, in [18], showed that, in this context, $\Omega^{1}(\log C)$ is a free-module generated by a set of two elements $\left\{\omega_{1}, \omega_{2}\right\}$, called a Saito basis for C, and it is characterized by a property we refer to as the Saito's criterion : a set of two elements $\left\{\omega_{1}, \omega_{2}\right\}$ is a Saito basis if and only if for some unit $u \in \mathbb{C}\{x, y\}$, we get

$$
\omega_{1} \wedge \omega_{2}=u f \mathrm{~d} x \wedge \mathrm{~d} y
$$

The Saito number of C is by definition

$$
\mathfrak{s}(C)=\min \left\{\nu\left(\omega_{1}\right), \nu\left(\omega_{2}\right)\right\} .
$$

It can be seen that $\mathfrak{s}(C)$ is also equal to $\min \{\nu(\mathcal{F}): C$ is invariant by $\mathcal{F}\}$ and is an analytic invariant of C [8].
Let $\operatorname{Top}(C)$ be the topological (or equisingularity) class of C. In this section, as a consequence of the previous results, we present an algorithm to select a curve $C^{\prime} \in \operatorname{Top}(C)$ and a foliation \mathcal{F}^{\prime} leaving invariant C^{\prime} such that

$$
\nu\left(\mathcal{F}^{\prime}\right)=\mathfrak{s}\left(C^{\prime}\right)=\min _{C^{\prime \prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime \prime}\right)
$$

Let E be the desingularization process of C and \mathbb{A} be the dual graph of E. The integer $n_{s}(C)$ stands for the number of components of the strict transform of C by E attached to the component s of the exceptional divisor.
Let \mathcal{F} be a foliation whose C is an invariant curve and consider its dual graph $\mathbb{A}[\mathcal{F}, E]$. Suppose that s is a white vertex. Since s is invariant by $E^{\star} \mathcal{F}, E^{\star} \mathcal{F}$ is singular at any point p of s at which is attached a component of the strict transform of C. In particular, the index

$$
\operatorname{Ind}\left(E^{\star} \mathcal{F}, s, p\right)
$$

is strictly positive. Therefore, for any white vertex s, one has

$$
s(2) \geq n_{s}(C)
$$

From $\mathbb{A}[\mathcal{F}, E]$, we consider the double numbered colored graph \mathbb{A} which is a copy of $\mathbb{A}[\mathcal{F}, E]$ except that we set

- for any white vertex $s(2)=n_{s}(C)$
- for any black vertex $s(2)=2-\operatorname{val}_{w}(s)$.

If doing so, the property (c) of Proposition 1.4 is not satisfied for some component \mathbb{K}, we set $s(2)=1$ for the vertex s of \mathbb{K} for which $\rho(s)$ is minimal. Applying Proposition 1.4 yields a foliation \mathcal{F}^{\prime} that let invariant a curve C^{\prime} which is topologically equivalent to C. Indeed, for any component s, either s is black, \mathcal{F}^{\prime} generically transverse to s and we choose arbitrarily $n_{S}(C)$ regular and transverse invariant curves attached to s, or s is white and \mathcal{F}^{\prime} is locally given by (2) and leaves invariant $s(2)=n_{s}(C)$ regular and transverse curves still attached to s. The union of all these curves yields a curve C^{\prime} whose desingularization process has the dual graph of E. Since $n_{s}\left(C^{\prime}\right)=n_{s}(C)$, then C^{\prime} and C are topologically equivalent [20].

Proposition 1.5 (Algorithm 1). We have

$$
\nu\left(\mathcal{F}^{\prime}\right) \leq \nu(\mathcal{F})
$$

Proof. Let \mathcal{K}_{1} the set of components \mathbb{K} of \AA for which one has $n_{s}(C)=0$ for all $s \in \mathbb{K}$ and \mathcal{K}_{2} the other set of components. If $\mathbb{K} \in \mathcal{K}_{1}$, we denote by $s_{\mathbb{K}}$ a vertex for which $s_{\mathbb{K}}(2)>0$, that exists according to Proposition 1.4.
We have

$$
\begin{aligned}
\nu(\mathcal{F})=-1 & +\sum_{s \in \mathbb{A}[\mathcal{F}, E]} s(1) s(2) \\
=-1 & +\sum_{s \text { black }} \rho(s)\left(2-\operatorname{val}_{w}(s)+\sum_{p \in s} \operatorname{Tan}\left(E^{\star} \mathcal{F}, s, p\right)\right) \\
& +\sum_{\mathbb{K} \in \mathcal{K}_{1}} \sum_{s \in \mathbb{K}} \rho(s) s(2)+\sum_{\mathbb{K} \in \mathcal{K}_{2}} \sum_{s \in \mathbb{K}} \rho(s) s(2) .
\end{aligned}
$$

Now, for $\mathbb{K} \in \mathcal{K}_{1}$, we can give the following lower bound

$$
\begin{aligned}
\sum_{s \in \mathbb{K}} \rho(s) s(2) & \geq \rho\left(s_{\mathbb{K}}\right) s_{\mathbb{K}}(2)+\sum_{s \in \mathbb{K} \backslash\left\{s_{\mathbb{K}}\right\}} \rho(s) s(2) \\
& \geq \min _{s \in \mathbb{K}} \rho(s)
\end{aligned}
$$

For $\mathbb{K} \in \mathcal{K}_{2}$, the following lower bound occurs

$$
\sum_{s \in \mathbb{K}} \rho(s) s(2) \geq \sum_{s \in \mathbb{K}} \rho(s) n_{s}(C)
$$

Finally, if s is black, then

$$
\rho(s)\left(2-\operatorname{val}_{w}(s)+\sum_{p \in s} \operatorname{Tan}\left(E^{\star} \mathcal{F}, s, p\right)\right) \geq \rho(s)\left(2-\operatorname{val}_{w}(s)\right)
$$

Combining all these inequalities leads to

$$
\begin{aligned}
\nu(\mathcal{F}) \geq-1 & +\sum_{s \text { black }} \rho(s)\left(2-\operatorname{val}_{w}(s)\right) \\
& +\sum_{\mathbb{K} \in \mathcal{K}_{1}} \min _{s \in \mathbb{K}} \rho(S)+\sum_{\mathbb{K} \in \mathcal{K}_{2}} \sum_{s \in \mathbb{K}} \rho(s) n_{s}(C)=\nu\left(\mathcal{F}^{\prime}\right) .
\end{aligned}
$$

Propostion 1.5 provides a simple algorithm that determines the minimal Saito number of a given equisingularity class of plane curves. Consider E the desingularization process of C and \mathbb{A} its dual graph. Choose any coloration of the graph among the finite set of such coloration and set $s(2)$ as in Proposition 1.5: the value of $s(2)$
depends only on C and on the chosen coloration. Each such choice leads to a certain multiplicity of foliation. The smallest multiplicity among them is the desired number. The complexity of this algorithm is $O\left(2^{b}\right)$ where b is the length of the desingularization process. As a consequence, Theorem 1 stated in the introduction is proved.
In the sections below, we treat some examples, for which, beyond the algorithm, some formula can be established.

1.3.1 Irreducible curve.

Let C be an irreducible plane curve given by a parametrization

$$
\psi(t)=\left(t^{\nu_{0}}, \sum_{i \geq \beta_{1}} a_{i} t^{i}\right)
$$

The equisingularity class $\operatorname{Top}(C)$ of C can be totally determined by the dual graph of the desingularization process E of C, equivalently by its characteristic exponents $\beta_{0}=\nu_{0}=\nu(C), \beta_{1}=\nu_{1}, \beta_{2}, \ldots, \beta_{g}$ or by its value semigroup $\Gamma=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{g}\right\rangle$ (see [21] for instance).
Notice that C can be defined by the minimal polynomial $f \in \mathbb{C}\{x\}[y]$ of

$$
\sum_{i \geq \beta_{1}} a_{i} x^{\frac{i}{\nu_{0}}}
$$

Let $f_{g} \in \mathbb{C}\{x\}[y]$ be the minimal polynomial of the function

$$
\sum_{\beta_{1} \leq i<\beta_{g}} a_{i} x^{\frac{i}{\nu_{0}}}
$$

according to [21] we get $\nu\left(f_{g}\right)=\frac{\nu_{0}}{e_{g-1}}$ where

$$
e_{g-1}=\operatorname{gcd}\left(\beta_{0}, \ldots, \beta_{g-1}\right)=\operatorname{gcd}\left(\nu_{0}, \ldots, \nu_{g-1}\right)
$$

and the intersection multiplicity with f is $\mathrm{I}\left(f, f_{g}\right)=\nu_{g}$.
Consider the differential 1 -form $\omega=\nu_{0} x \mathrm{~d} f_{g}-\nu_{g} f_{g} \mathrm{~d} x$. The foliation associated to ω leaves invariant the curves $x=0$ and $f_{g}=0$ whose strict transform are attached respectively in the first and last extreme ${ }^{1}$ component of E (see Theorem 3.7 in [6]). In addition, it is purely dicritical along the central component, that is the one to which is attached the strict transform of C. In such component, the foliation admits infinite many invariant curves C_{u} given by

$$
\psi_{u}(t)=\left(t^{\nu_{0}}, \sum_{\beta_{1} \leq i<\beta_{g}} a_{i} t^{i}+u t^{\beta_{g}}+\sum_{i>\beta_{g}} r(u) t^{i}\right)
$$

[^1]

Figure 3: Desingularization process for a irreducible plane curve and $\mathcal{F}_{\text {min }}$.
for every $u \in \mathbb{C} \backslash\{0\}$ and $r(u) \in \mathbb{C}(u)$. Consequently, $C_{u} \in \operatorname{Top}(C)$ for any $u \in \mathbb{C} \backslash\{0\}$. In addition, we get

$$
\nu(\omega)=\frac{\nu_{0}}{e_{g-1}} .
$$

On another hand, the simple structure of E allows us to follow Algorithm 1 described in Proposition 1.5 by hand. Indeed, the desingularization process of C is shown in Figure 3. Consider a foliation $\mathcal{F}_{\text {min }}$ purely dicritical along the central component. Moreover, $\mathcal{F}_{\text {min }}$ leaves invariant two regular curve attached to the first and the last extreme component of E of respective multiplicities 1 and $\frac{\nu(C)}{e_{g-1}}$. Applying Proposition 1.2 in that situation yields the formula

$$
\nu\left(\mathcal{F}_{\text {min }}\right)=\frac{\nu_{0}}{e_{g-1}} .
$$

This value is also the minimum value for a Saito number in the equisingularity class of C. Indeed, consider a foliation \mathcal{F} tangent to C. Proposition 1.2 is written

$$
\nu(\mathcal{F})=-1+\sum_{s \in \mathbb{A}[\mathcal{F}, E]} s(1) s(2) .
$$

In view of the expression of $s(2)$, a term with a negative contribution in the above sum may appear only if \mathcal{F} is dicritical along some component s_{0} of valence 3 and any component attached to s_{0} is not dicritical. However, doing so, along the branch of the tree attached to s_{0} there must be some component s_{1} such that $s_{1}(2)>0$. Therefore, the contribution of both components s_{0} and s_{1} is written

$$
s_{0}(1)(-1+\alpha)+s_{1}(1) s_{1}(2)
$$

with $\alpha \geq 0$. Since, $s_{1}(1) \geq s_{0}(1)$, as the whole, the contribution keeps on being positive : as a consequence, it is useless for \mathcal{F} to be dicritical along s_{0} in order to
reach the desired minimum and the valuation of \mathcal{F} is bigger than the valuation of $\mathcal{F}_{\text {min }}$. Finally, we recover the result of [5], that is

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=\nu(\omega)=\nu\left(\mathcal{F}_{\min }\right)=\frac{\nu_{0}}{e_{g-1}}
$$

Remark 1.6. The Saito numbers of the curves in $\operatorname{Top}(C)$ where C is an irreducible curve for which $e_{g-1}=2$, are constant. Indeed, from the result above and [8], we have

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=\max _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=\frac{\nu_{0}}{2}
$$

1.3.2 Non-irreducible Curves.

A curve with two components. As a generalization of Example 1.3 let us consider C be the plane curve defined by

$$
f=\left(y^{\nu_{0}}-x^{\nu_{1}}\right)\left(x^{\nu_{0}}-y^{\nu_{1}}\right)=0
$$

where $1=\operatorname{gcd}\left(\nu_{0}, \nu_{1}\right)<\nu_{0}<\nu_{1}$. It can be seen that the two following differential 1-forms

$$
\begin{aligned}
\omega_{1}= & \left(\nu_{1}^{2} x^{\nu_{1}-\nu_{0}}\left(y^{\nu_{1}}-x^{\nu_{0}}\right)-\nu_{0}^{2}\left(y^{\nu_{0}}-x^{\nu_{1}}\right)\right) d x \\
& +\nu_{0} \nu_{1} x y^{\nu_{0}-1}\left(1-x^{\nu_{1}-\nu_{0}} y^{\nu_{1}-\nu_{0}}\right) d y \\
\omega_{2}= & \left(\nu_{1}^{2} y^{\nu_{1}-\nu_{0}}\left(y^{\nu_{0}}-x^{\nu_{1}}\right)-\nu_{0}^{2}\left(y^{\nu_{1}}-x^{\nu_{0}}\right)\right) d y \\
& -\nu_{0} \nu_{1} x^{\nu_{0}-1} y\left(1-x^{\nu_{1}-\nu_{0}} y^{\nu_{1}-\nu_{0}}\right) d x
\end{aligned}
$$

satisfy the Saito criterion, that is

$$
\omega_{1} \wedge \omega_{2}=\left(\nu_{1}-\nu_{0}\right)\left(\nu_{1}+\nu_{0}\right)\left(\nu_{0}^{2}-\nu_{1}^{2} x^{\nu_{1}-\nu_{0}} y^{\nu_{1}-\nu_{0}}\right) f \mathrm{~d} x \wedge \mathrm{~d} y
$$

and thus $\left\{\omega_{1}, \omega_{2}\right\}$ is a Saito basis for C. As a consequence, we find

$$
\mathfrak{s}(C)=\nu_{0}
$$

Since the latter is also an upper bound for the maximum Saito number in the associated equisingularity class, we obtain

$$
\max _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=\nu_{0}
$$

On the other hand, the minimal Saito number is reached for the foliation depicted in Figure 4, and thus

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=2
$$

Figure 4: Topology of the foliation with the minimal Saito number for C : $\left(y^{\nu_{0}}-x^{\nu_{1}}\right)\left(x^{\nu_{0}}-y^{\nu_{1}}\right)=0$.

Curves with many components. Let C be a curve desingularized by E. Let \mathbb{A} be the dual graph of E. We say that C has a lot of components if

$$
\forall s \in \mathbb{A}, n_{s}(C) \geq 2+\sum_{s^{\prime}, s \cap s^{\prime} \neq \emptyset} \frac{\rho\left(s^{\prime}\right)}{\rho(s)}
$$

The curves with a lot of components are of special interest because the foliation associated to their minimal Saito number happens to be absolutely dicritical as defined in [3].

Proposition 1.7. If C has a lot of components then the minimal Saito number in $\operatorname{Top}(C)$ is equal to

$$
\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)=-1+2 \sum_{s \in \mathbb{A}} \rho(s) .
$$

and is reached by an absolutely dicritical foliation with respect to E.
In particular, the minimal Saito number of a topological class of curve with a lot of components does not depends on C anymore but only on E.

Proof. Let \mathcal{F} be a foliation leaving invariant C^{\prime} and reaching the minimum above. According to Proposition 1.5, we can suppose that \mathcal{F} is constructed by gluing local models of Proposition 1.4. Consider now $s \in \mathbb{A}[\mathcal{F}, E]$ and suppose that s is white. Using still the Lins Neto's argument, we can construct a foliation \mathcal{F}_{s} such that $\mathbb{A}\left[\mathcal{F}_{s}, E\right]$ has the same coloration as $\mathbb{A}\left[\mathcal{F}_{s}, E\right]$ except that s is black in $\mathbb{A}\left[\mathcal{F}_{s}, E\right]$. In particular, following Proposition 1.2

$$
\begin{aligned}
\nu(\mathcal{F})= & -1+\rho(s) n_{s}(C) \\
& +\sum_{\substack{s^{\prime}, s \cap n^{\prime} \neq \emptyset}} \delta_{s^{\prime}} \rho\left(s^{\prime}\right) n_{s^{\prime}}(C)+\left(1-\delta_{s^{\prime}}\right) \rho\left(s^{\prime}\right)\left(2-\operatorname{val}_{w}\left(s^{\prime}\right)\right) \\
& +(\text { does not depend on } s)
\end{aligned}
$$

and

$$
\begin{aligned}
\nu\left(\mathcal{F}_{s}\right)= & -1+\rho(s)\left(2-\operatorname{val}_{w}(s)\right) \\
& +\sum_{s^{\prime}, s \cap s^{\prime} \neq \emptyset} \delta_{s^{\prime}} \rho\left(s^{\prime}\right) n_{s^{\prime}}(C)+\left(1-\delta_{s^{\prime}}\right) \rho\left(s^{\prime}\right)\left(3-\operatorname{val}_{w}\left(s^{\prime}\right)\right) \\
& +(\text { does not depend on } s)
\end{aligned}
$$

where $\delta_{s}=1$ if s is white, 0 otherwise. Therefore, we get

$$
\nu(\mathcal{F})-\nu\left(\mathcal{F}_{s}\right)=\rho(s)\left(n_{s}(C)-2+\operatorname{val}_{w}(s)\right)-\sum_{s^{\prime}, s \cap s^{\prime} \neq \emptyset}\left(1-\delta_{s^{\prime}}\right) \rho\left(s^{\prime}\right)
$$

It can be seen that the latter is a positive expression under the assumption of the proposition. As a consequence, we can always decrease the multiplicity of a foliation leaving invariant a curve $C^{\prime} \in \operatorname{Top}(C)$ by making black any of component $\mathbb{A}[\mathcal{F}, E]$. In the end, the obtained foliation is absolutely dicritical as defined in [3] with respect to E and its multiplicity is

$$
-1+\sum_{s \in \mathbb{A}} \rho(s)\left(2-\operatorname{val}_{w}(s)\right)=-1+2 \sum_{s \in \mathbb{A}} \rho(s)
$$

2 Range of the Saito function on given topological classes.

Let us consider C a germ of plane curve. In [11], it is proved that the maximum Saito number along the topological class Top (C) is given by

$$
\max _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)= \begin{cases}\frac{\nu(C)}{2}-1 & \text { if } C \text { is radial and } \nu(C) \text { is even } \\ \left\lfloor\frac{\nu(C)}{2}\right\rfloor & \text { if not, }\end{cases}
$$

radial being defined in [11]. Actually, the above maximum is reached for a generic element C^{\prime} in the equisingularity class of C. Moreover, in the previous section, we provide an algorithm (see Proposition 1.5) to compute the minimum $\min _{C^{\prime} \in \operatorname{Top}(C)} \mathfrak{s}\left(C^{\prime}\right)$. It is of natural interest to look at the integers between these two bounds that are reached as a Saito number of a certain analytical class of curves in the given equisingularity class.
For that purpose, let us consider the curve $C_{N, \nu_{0}, \nu_{1}}$ given by

$$
f_{N, \nu_{0}, \nu_{1}}=y^{N \nu_{0}}-x^{N \nu_{1}}=0
$$

where $N>0$ and $\nu_{0} \leq \nu_{1}$ are relatively prime. Since, considering the two $1-$ forms

$$
\omega=\nu_{1} y \mathrm{~d} x-\nu_{0} x \mathrm{~d} y \text { and } \eta=\mathrm{d} f_{N, \nu_{0}, \nu_{1}}
$$

leads to the Saito criterion

$$
\omega \wedge \eta=N \nu_{0} \nu_{1} f_{N, \nu_{0}, \nu_{1}} \mathrm{~d} x \wedge \mathrm{~d} y
$$

we obtain

$$
\min _{C \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right)} \mathfrak{s}(C)=\min \left\{1, N \nu_{0}-1\right\},
$$

which is equal to 1 except when $N \nu_{0}=1$, that is when the curve $C_{N, \nu_{0}, \nu_{1}}$ is regular, for which the minimum in 0 . As a consequence of the computations in [8, Proposition 8], it appears that the curve $C_{N, \nu_{0}, \nu_{1}}$ is radial if and only if $\nu_{1}=1$ and $N \geq 3$. In particular, if $\nu_{1}>1$ then

$$
\max _{C \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right)} \mathfrak{s}(C)=\left\lfloor\frac{N \nu_{0}}{2}\right\rfloor .
$$

The goal of the next subsections is to show that the range of the map

$$
C \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right) \mapsto \mathfrak{s}(C)
$$

is the whole set of integers between the two above extrema.

2.1 Saito numbers in the topological class $\operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$.

If $\nu_{0}=1$ then $\mathfrak{s}(C)=0$, thus, in what follows, we suppose that $\nu_{0}>1$. In particular, we obtain

$$
\min _{C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)} \mathfrak{s}(C)=1 \quad \text { and } \quad \max _{C \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right)} \mathfrak{s}(C)=\left\lfloor\frac{\nu_{0}}{2}\right\rfloor .
$$

Since $\mathfrak{s}\left(C_{1, \nu_{0}, \nu_{1}}\right)=1$, to show that any $k \in\left\{1, \ldots,\left\lfloor\frac{\nu_{0}}{2}\right\rfloor\right\}$ is achieved as a Saito number for an element in $\operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ it is sufficient to consider $k>1$ and $\nu_{0}>3$. Given any irreducible plane curve C with parameterization $\psi(t) \in \mathbb{C}\{t\} \times \mathbb{C}\{t\}$ the semigroup Γ_{C} associated to C is

$$
\Gamma_{C}=\left\{\nu\left(\psi^{*}(h)\right) ; h \in \mathbb{C}\{x, y\} \text { such that } \psi^{*}(h) \neq 0\right\} .
$$

We can extend the valuation $\nu(\cdot)$ to a differential 1-form not tangent to C and we define the set

$$
\Lambda_{C}=\left\{\nu\left(\psi^{*}(\eta)\right)+1 ; \eta \text { is a differential 1-form not tangent to } C\right\}
$$

The set Λ_{C} is an analytical invariant for C and it is a Γ_{C}-semimodule finitely generated [15], that is, there exist $\lambda_{-1}, \lambda_{0}, \ldots, \lambda_{s} \in \Lambda_{C}$ such that

$$
\Lambda_{C}=\bigcup_{i=-1}^{s}\left(\Gamma_{C}+\lambda_{i}\right)
$$

with $\lambda_{j} \notin \Lambda_{j-1}:=\bigcup_{i=-1}^{j-1}\left(\Gamma_{C}+\lambda_{i}\right)$ for $0 \leq j \leq s$. In [15] we find an algorithm to compute a minimal system of generators of Λ_{C} for any irreducible plane curve C. Given $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$, that is, $\Gamma_{C}=\left\langle\nu_{0}, \nu_{1}\right\rangle$ there is another valuation associated to C called divisorial valuation given as the following. If $h=\sum_{i, j \geq 0} h_{i j} x^{i} y^{j} \in$ $\mathbb{C}\{x, y\} \backslash\{0\}$ the divisorial valuation $\nu_{D}(h)$ of h is (see [4])

$$
\begin{equation*}
\nu_{D}(h)=\min \left\{\nu_{0} i+\nu_{1} j \mid h_{i j} \neq 0\right\} \tag{5}
\end{equation*}
$$

and we extend it to a differential 1-form $A \mathrm{~d} x+B \mathrm{~d} y$ by

$$
\nu_{D}(A \mathrm{~d} x+B \mathrm{~d} y)=\min \left\{\nu_{D}(A)+\nu_{0}, \nu_{D}(B)+\nu_{1}\right\}
$$

For $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$, Cano, Corral and Senovilla-Sanz in [4] introduce a finite set of integers from which is derived a characterization of a Saito basis for C. In the following, we briefly describe this construction. Let $\lambda_{-1}, \lambda_{0}, \ldots, \lambda_{s} \in \Lambda_{C}$ be the miminal generators for Λ_{C}. Setting $t_{0}=\lambda_{0}=\nu_{1}$, for $1 \leq i \leq s+1$, define inductively the following data

$$
\begin{align*}
u_{i}^{\star} & =\min \left\{\lambda_{i-1}+\nu_{\star} n \in \Lambda_{i-2} ; n \geq 1\right\} \tag{6}\\
t_{i}^{\star} & =t_{i-1}+u_{i}^{\star}-\lambda_{i-1}
\end{align*}
$$

where $\star=0,1$ and

$$
t_{i}=\min \left\{t_{i}^{0}, t_{i}^{1}\right\} \quad \tilde{t_{i}}=\max \left\{t_{i}^{0}, t_{i}^{1}\right\} .
$$

The mentioned above result is enunciated below.
Theorem 2.1 (Cano, Corral and Senovilla-Sanz). For $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$, there exist two differential 1-forms ω_{s+1} and $\tilde{\omega}_{s+1}$ leaving C invariant such that

$$
\nu_{D}\left(\omega_{s+1}\right)=t_{s+1} \quad \text { and } \quad \nu_{D}\left(\tilde{\omega}_{s+1}\right)=\tilde{t}_{s+1}
$$

Moreover, for any pair of differential 1-forms as above, the set $\left\{\omega_{s+1}, \tilde{\omega}_{s+1}\right\}$ is a Saito basis for C.

For $\nu_{0}>3$ and any $1<k \leq\left\lfloor\frac{\nu_{0}}{2}\right\rfloor$, let us consider the differential 1 -form defined by

$$
\begin{equation*}
\omega=\nu_{1} x^{k-1}\left(\nu_{0} x d y-\nu_{1} y d x\right)+\nu_{0}\left(\gamma-\nu_{1}\right) y^{\nu_{0}-k} d y \tag{7}
\end{equation*}
$$

with $\gamma:=\left(\nu_{0}-k+1\right) \nu_{1}-k \nu_{0}$.
Notice that for any plane curve $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ we get

$$
\nu_{D}(\omega)=\nu_{D}\left(x^{k-1}\left(\nu_{0} x \mathrm{~d} y-\nu_{1} y \mathrm{~d} x\right)\right)=k \nu_{0}+\nu_{1} .
$$

Lemma 2.2. There is a curve $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ invariant by ω and given by a parametrization of the form

$$
\begin{equation*}
\psi(t)=\left(t^{\nu_{0}}, t^{\nu_{1}}+t^{\gamma}+\sum_{i \geq 2 \gamma-\nu_{1}} a_{i} t^{i}\right) \tag{8}
\end{equation*}
$$

Proof. Considering $\psi(t)$ as in the lemma, we have

$$
\psi^{*}\left(\nu_{0} x d y-\nu_{1} y d x\right)=\nu_{0}\left(\gamma-\nu_{1}\right) t^{\gamma+\nu_{0}-1}+\sum_{i \geq 2 \gamma-\nu_{1}} \nu_{0}\left(i-\nu_{1}\right) a_{i} t^{i+\nu_{0}-1}
$$

and

$$
\psi^{*}\left(y^{\nu_{0}-k+1}\right)=t^{\left(\nu_{0}-k+1\right) \nu_{1}}+\left(\nu_{0}-k+1\right) t^{\gamma+\left(\nu_{0}-k\right) \nu_{1}}+\sum_{j>\left(\nu_{0}-k\right) \nu_{1}+\gamma} Q_{j} t^{j}
$$

where $Q_{j} \in \mathbb{C}\left[a_{2 \gamma-\nu_{1}+1}, \ldots, a_{j-\left(\nu_{0}-k\right) \nu_{1}}\right]$. In this way, since

$$
\gamma=\left(\nu_{0}-k+1\right) \nu_{1}-k \nu_{0}
$$

we get

$$
\begin{aligned}
\psi^{*}\left(y^{\nu_{0}-k} d y\right)= & \nu_{1} t^{\left(\nu_{0}-k+1\right) \nu_{1}-1}+\left(\gamma+\left(\nu_{0}-k\right) \nu_{1}\right) t^{\gamma+\left(\nu_{0}-k\right) \nu_{1}-1} \\
& +\sum_{j>\left(\nu_{0}-k\right) \nu_{1}+\gamma} \frac{j}{\nu_{0}-k+1} Q_{j} t^{j-1} \\
= & \nu_{1} t^{\gamma+k \nu_{0}-1}+\left(\gamma+\left(\nu_{0}-k\right) \nu_{1}\right) t^{2 \gamma-\nu_{1}+k \nu_{0}-1}+ \\
& +\sum_{i>2 \gamma-\nu_{1}} \frac{i+k \nu_{0}}{\nu_{0}-k+1} Q_{i+k \nu_{0}} t^{i+k \nu_{0}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi^{*}(\omega)= & \nu_{0}\left(\gamma-\nu_{1}\right)\left(2 \nu_{1} a_{2\left(\gamma-\nu_{1}\right)}-\left(\gamma+\left(\nu_{0}-k\right) \nu_{1}\right)\right) t^{\gamma+\left(\nu_{0}-k\right) \nu_{1}-1} \\
& +\nu_{0} \sum_{i>2 \gamma-\nu_{1}}\left(\nu_{1}\left(i-\nu_{1}\right) a_{i}-\frac{\left(i+k \nu_{0}\right)\left(\gamma-\nu_{1}\right)}{\nu_{0}-k+1} Q_{i+k \nu_{0}}\right) t^{i+k \nu_{0}-1}
\end{aligned}
$$

From $k \leq \nu_{0}-k$, we get $i+k \nu_{0}-\left(\nu_{0}-k\right) \nu_{1}<i$ and

$$
Q_{i+k \nu_{0}} \in \mathbb{C}\left[a_{2 \gamma-\nu_{1}}, \ldots, a_{i+k \nu_{0}-\left(\nu_{0}-k\right) \nu_{1}}\right] \subseteq \mathbb{C}\left[a_{2 \gamma-\nu_{1}}, \ldots, a_{i-1}\right]
$$

So, setting

$$
a_{2 \gamma-\nu_{1}}=\frac{\gamma+\left(\nu_{0}-k\right) \nu_{1}}{2 \nu_{1}} \quad \text { and } \quad a_{i}=\frac{\left(\gamma-\nu_{1}\right)\left(i+k \nu_{0}\right)}{\nu_{1}\left(i-\nu_{1}\right)\left(\nu_{0}-k+1\right)} Q_{i+k \nu_{0}}
$$

yields a parameterization $\psi(t)$ defining a plane curve $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ invariant by ω.

We now prove the main result of this subsection.
Proposition 2.3. For any $1 \leq k \leq\left\lfloor\frac{\nu_{0}}{2}\right\rfloor$, there exists $C \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ such that $\mathfrak{s}(C)=k$.

Proof. If $k=1$ then considering $C_{1, \nu_{0}, \nu_{1}}$ we get $\mathfrak{s}\left(C_{1, \nu_{0}, \nu_{1}}\right)=1$. Therefore, suppose that $\nu_{0}>3$ and let k be an integer in $\left\{2, \ldots,\left\lfloor\frac{\nu_{0}}{2}\right\rfloor\right\}$. Let $C \in \operatorname{Top}\left(C_{1}, \nu_{0}, \nu_{1}\right)$ be the curve characterized in the previous lemma with parametrization $\psi(t)$ as (8).
We will compute the minimal generators $\left\{\lambda_{-1}, \lambda_{0}, \ldots, \lambda_{s}\right\}$ for Λ_{C} using the algorithm developed in [15]. The first two generators are written

$$
\begin{aligned}
\lambda_{-1} & =\nu\left(\psi^{*}(\mathrm{~d} x)\right) \\
\lambda_{0} & =\nu\left(\psi_{0}\right. \\
& (\mathrm{d} y))
\end{aligned}=\nu_{1} .
$$

The next generator of Λ_{C} will be equal to the valuation $\nu\left(\psi^{*}\left(\omega_{1}^{(i)}\right)\right)$ where

$$
\nu\left(\psi^{*}\left(\omega_{1}^{(i)}\right)\right) \notin\left(\Gamma_{C}+\nu_{0}\right) \cup\left(\Gamma_{C}+\nu_{1}\right) \subset \Gamma_{C}
$$

for $i \in\{1,2\}$ and

$$
\begin{aligned}
& \omega_{1}^{(1)}=\nu_{0} x \mathrm{~d} y-\nu_{1} y \mathrm{~d} x+h_{11} \mathrm{~d} x+h_{12} \mathrm{~d} y \\
& \omega_{1}^{(2)}=\nu_{0} y^{\nu_{0}-1} \mathrm{~d} y-\nu_{1} x^{\nu_{1}-1} \mathrm{~d} x+h_{21} \mathrm{~d} x+h_{22} \mathrm{~d} y
\end{aligned}
$$

The function $h_{i j} \in \mathbb{C}\{x, y\}$ will satisfy furthermore

$$
\begin{aligned}
& \nu\left(\psi^{*}\left(h_{11} \mathrm{~d} x+h_{12} \mathrm{~d} y\right)\right) \geq \nu\left(\psi^{*}\left(\nu_{0} x \mathrm{~d} y-\nu_{1} y \mathrm{~d} x\right)\right) \\
& \nu\left(\psi^{*}\left(h_{21} \mathrm{~d} x+h_{22} \mathrm{~d} y\right)\right) \geq \nu\left(\psi^{*}\left(\nu_{0} y^{\nu_{0}-1} \mathrm{~d} y-\nu_{1} x^{\nu_{1}-1} \mathrm{~d} x\right)\right)
\end{aligned}
$$

The valuation of $\psi^{*}\left(\nu_{0} x \mathrm{~d} y-\nu_{1} y \mathrm{~d} x\right)$ is equal to

$$
\left(\nu_{0}-k+1\right) \nu_{1}-(k-1) \nu_{0}
$$

and does not belong to $\left(\Gamma_{C}+\nu_{0}\right) \cup\left(\Gamma_{C}+\nu_{1}\right)$. Moreover, we get

$$
\nu\left(\psi^{*}\left(\nu_{0} y^{\nu_{0}-1} \mathrm{~d} y-\nu_{1} x^{\nu_{1}-1} \mathrm{~d} x\right)\right)>\nu_{0} \nu_{1}
$$

Therefore, we observe that

$$
\nu\left(\psi^{*}\left(\omega_{1}^{(2)}\right)\right) \in\left(\Gamma_{C}+\nu_{0}\right) \cup\left(\Gamma_{C}+\nu_{1}\right)
$$

for any $h_{21}, h_{22} \in \mathbb{C}\{x, y\}$. Thus, denoting $\omega_{1}=\nu_{0} x \mathrm{~d} y-\nu_{1} y \mathrm{~d} x$, we obtain one more minimal generator for Λ_{C} as

$$
\lambda_{1}=\nu\left(\psi^{*}\left(\omega_{1}\right)\right)=\gamma+\nu_{0}=\left(\nu_{0}-k+1\right) \nu_{1}-(k-1) \nu_{0}
$$

Beyond λ_{1} the next possible minimal generator for Λ_{C} is obtained considering

$$
\begin{aligned}
& \omega_{2}^{(1)}=\nu_{1} x^{k-1} \omega_{1}+\nu_{0}\left(\gamma-\nu_{1}\right) y^{\nu_{0}-k} \mathrm{~d} y+h_{11} \mathrm{~d} x+h_{12} \mathrm{~d} y+h_{13} \omega_{1} \\
& \omega_{2}^{(2)}=y^{k-1} \omega_{1}+\left(\gamma-\nu_{1}\right) x^{\nu_{1}-k} \mathrm{~d} x+h_{21} \mathrm{~d} x+h_{22} \mathrm{~d} y+h_{23} \omega_{1}
\end{aligned}
$$

with $h_{i j} \in \mathbb{C}\{x, y\}$ and

$$
\begin{aligned}
& \nu\left(\psi^{*}\left(h_{11} \mathrm{~d} x+h_{12} \mathrm{~d} y+h_{13} \omega_{1}\right)\right) \geq \nu\left(\psi^{*}\left(\nu_{1} x^{k-1} \omega_{1}+\nu_{0}\left(\gamma-\nu_{1}\right) y^{\nu_{0}-k} \mathrm{~d} y\right)\right) \\
& \nu\left(\psi^{*}\left(h_{21} \mathrm{~d} x+h_{22} \mathrm{~d} y+h_{23} \omega_{1}\right)\right) \geq \nu\left(\psi^{*}\left(y^{k-1} \omega_{1}+\left(\gamma-\nu_{1}\right) x^{\nu_{1}-k} \mathrm{~d} x\right)\right)
\end{aligned}
$$

Notice that $\nu_{1} x^{k-1} \omega_{1}+\nu_{0}\left(\gamma-\nu_{1}\right) y^{\nu_{0}-k} \mathrm{~d} y$ is precisely the 1-form ω given in (7). This implies that $\psi^{*}(\omega)=0$; so $\omega_{2}^{(1)}$ does not produce any new minimal generator for Λ_{C}.
On the other hand, we remark that any integer n such that

$$
n \geq \nu\left(\omega_{2}^{(2)}\right)>\left(\nu_{1}-k+1\right) \nu_{0}
$$

belongs to $\bigcup_{i=-1}^{1}\left(\Gamma_{C}+\lambda_{i}\right)$. Indeed, any integer n can be uniquely expressed as $n=$ $\alpha \nu_{1}+\beta \nu_{0}$ with $0 \leq \alpha<\nu_{0}$ and $\beta \in \mathbb{Z}$. If $\beta \geq 0$ then n belongs to $\left(\Gamma_{C}+\nu_{0}\right) \cup\left(\Gamma_{C}+\nu_{1}\right)$. If $\beta<0$ then the condition $n>\left(\nu_{1}-k+1\right) \nu_{0}$ implies $\alpha \leq \nu_{0}-k$ and $k-1+\beta>1$. Consequently, there exists $\delta \in \mathbb{N}$ such that

$$
\begin{aligned}
n & =\alpha \nu_{1}+\beta \nu_{0} \\
& =\delta \nu_{1}+(k-1+\beta) \nu_{0}+\left(\nu_{0}-k+1\right) \nu_{1}-(k-1) \nu_{0} \in \Gamma_{C}+\lambda_{1}
\end{aligned}
$$

So, $\omega_{2}^{(2)}$ does not produce any new minimal generator for Λ_{C} and we conclude that the minimal generators for Λ_{C} are

$$
\left\{\lambda_{-1}=\nu_{0}, \quad \lambda_{0}=\nu_{1}, \quad \lambda_{1}=\gamma+\nu_{0}=\left(\nu_{0}-k+1\right) \nu_{1}-(k-1) \nu_{0}\right\}
$$

Computing the integers introduced at (6) we obtain $t_{0}=\nu_{1}$ and

$$
\begin{array}{ll}
u_{1}^{0}=\nu_{0}+\nu_{1} & u_{1}^{1}=\nu_{0} \nu_{1} \\
t_{1}^{0}=t_{1}=\nu_{0}+\nu_{1} & t_{1}^{1}=\tilde{t}_{1}=\nu_{0} \nu_{1} \\
& \\
u_{2}^{0}=\left(\nu_{0}-k+1\right) \nu_{1} & u_{2}^{1}=\left(\nu_{1}-k+1\right) \nu_{0} \\
t_{2}^{0}=t_{2}=k \nu_{0}+\nu_{1} & t_{2}^{1}=\tilde{t}_{2}=k \nu_{1}+\nu_{0}
\end{array}
$$

Therefore, we get $\nu_{D}(\omega)=k \nu_{0}+\nu_{1}=t_{2}$. By Theorem 2.1, there exists a differential 1-form $\tilde{\omega}$ with $\nu_{D}(\tilde{\omega})=\tilde{t}_{2}=k \nu_{1}+\nu_{0}$ such that $\{\omega, \tilde{\omega}\}$ is a Saito basis for C.
Suppose that in the Taylor expansion of $\tilde{\omega}$ there exists a term of the form

$$
a_{i j} x^{i} y^{j} \mathrm{~d} x \quad \text { or } \quad a_{i j} x^{i} y^{j} \mathrm{~d} y
$$

such that $a_{i j} \neq 0$ and $\nu\left(x^{i} y^{j}\right)=i+j \leq k-1$. Then, we can see that

$$
\max \left\{\nu_{D}\left(x^{i} y^{j} \mathrm{~d} x\right), \nu_{D}\left(x^{i} y^{j} \mathrm{~d} y\right)\right\} \leq(i+j+1) \nu_{1} \leq k \nu_{1}<k \nu_{1}+\nu_{0}=\tilde{t}_{2}
$$

which is impossible. Therefore, we get $\nu(\tilde{\omega}) \geq k$ and

$$
\mathfrak{s}(C)=\nu(\omega)=k .
$$

2.2 Saito numbers in the topological class $\operatorname{Top}\left(C_{N, 1,1}\right)$

Among the curves $C_{N, \nu_{0}, \nu_{1}}$, the curves $C_{N, 1,1}$ with $N \geq 3$ are the only radial ones, that is, the maximum Saito number is generically realized by a dicritical differential 1 -form [11].
Denoting by \mathfrak{M}_{N} the number $\max _{C \in \operatorname{Top}\left(C_{N, 1,1}\right)} \mathfrak{s}(C)$, we get

$$
\mathfrak{M}_{N}=\left\{\begin{array}{rl}
0 & N=1 \\
1 & N=2,3,4 \\
\frac{N-1}{2} & N \geq 5 \text { and } N \text { odd } \\
\frac{N}{2}-1 & N \geq 5 \text { and } N \text { even. }
\end{array}\right.
$$

Proposition 2.4. For any $N>1$ and any k in $\left\{1, \ldots, \mathfrak{M}_{N}\right\}$, there exists C in $\operatorname{Top}\left(C_{N, 1,1}\right)$ such that

$$
\mathfrak{s}(C)=k
$$

Proof. If $k=\mathfrak{M}_{N}$ or if $N=2,3$ or 4 the statement is obvious. Suppose that $N \geq 5$ and let k be an integer in $\left\{1, \ldots, \mathfrak{M}_{N}-1\right\}$. Let us consider the differential 1-forms

$$
\omega_{1}=y \mathrm{~d} x-x \mathrm{~d} y, \omega_{2}=\omega_{1}+\mathrm{d} f
$$

where f is the function

$$
f=x^{N-2 k+2}+y^{N-2 k+2} .
$$

The couple $\left\{\omega_{1}, \omega_{2}\right\}$ is a Saito basis for $\{f=0\}$ since it satisfies the Saito criterion,

$$
\omega_{1} \wedge \omega_{2}=(N-2 k+2) f \mathrm{~d} x \wedge \mathrm{~d} y
$$

Since $N \geq 5$, the multiplicity of $\mathrm{d} f$ is bigger than 2 and after one blowing-up, both ω_{i} 's are dicritical. Let us consider $l_{1}^{(i)}=0, \ldots, l_{k-1}^{(i)}=0$ be $k-1$ smooth and transversal curves tangent to ω_{i}. We suppose moreover that these curves are transversal at a whole and transversal to $f=0$. Now writing

$$
\begin{equation*}
\prod_{i=1}^{k-1} l_{i}^{(2)} \omega_{1} \wedge \prod_{i=1}^{k-1} l_{i}^{(1)} \omega_{2}=(N-2 k+2) \prod_{i=1}^{k-1} l_{i}^{(2)} l_{i}^{(1)} f \mathrm{~d} x \wedge \mathrm{~d} y \tag{9}
\end{equation*}
$$

yields a Saito relation for the curve $C=\left\{\prod_{i=1}^{k-1} l_{i}^{(2)} l_{i}^{(1)} f=0\right\}$, a curve which consists in the union of N smooth and transversal curves. Thus, C is equisingular to $C_{N, 1,1}$ and, following (9), one has

$$
\mathfrak{s}(C)=k
$$

2.3 Saito numbers in the topological class $\operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right)$.

Let $C_{N, \nu_{0}, \nu_{1}}$ be the curve given by the equation

$$
f_{N, \nu_{0}, \nu_{1}}=y^{N \nu_{0}}-x^{N \nu_{1}}=0
$$

where $N>0$ and $\nu_{0} \leq \nu_{1}$ are relatively prime. Considering the divisorial valuation defined in (5) we get the following result.

Lemma 2.5. Let ω be the 1 -form be defined by $\omega=\nu_{1} y \mathrm{~d} x-\nu_{0} x \mathrm{~d} y$. Suppose that $h=x^{i} y^{j}$. If $\nu_{D}(h) \leq N \nu_{0} \nu_{1}-1-\nu_{0}-\nu_{1}$ then $\mathrm{d} f_{N, \nu_{0}, \nu_{1}}+h \omega$ is dicritical along the central component of the desingularization process of $C_{N, \nu_{0}, \nu_{1}}$.

Proof. Let u, v such that $u \nu_{0}-v \nu_{1}=1$. The local coordinates in the neighborhood of the central component D can be written

$$
x=x_{D}^{\nu_{0}-v} y_{D}^{\nu_{0}} \quad y=x_{D}^{\nu_{1}-u} y_{D}^{\nu_{1}} .
$$

$y_{D}=0$ being a local equation for D [13]. Computing the pullback of $\mathrm{d} f_{N, \nu_{0}, \nu_{1}}+h \omega$ in these coordinates yields

$$
\begin{array}{r}
y_{D}^{N \nu_{0} \nu_{1}-1}\left(y_{D}(\cdots) \mathrm{d} x_{D}+x_{D}(\cdots) \mathrm{d} y_{D}\right) \\
+h\left(x_{D}^{\nu_{0}-v} y_{D}^{\nu_{0}}, x_{D}^{\nu_{1}-u} y_{D}^{\nu_{1}}\right) y_{D}^{\nu_{0}+\nu_{1}} x_{D}^{\nu_{0}-v+\nu_{1}-u-1} \mathrm{~d} x_{D}
\end{array}
$$

The hypothesis of the lemma ensures that the above 1-form can be exactly divided by $y_{D}^{\nu_{D}(h)+\nu_{0}+\nu_{1}}$ and the 1 -form

$$
\begin{array}{r}
y_{D}^{N \nu_{0} \nu_{1}-1-\nu_{0}-\nu_{1}-\nu_{D}(h)}\left(y_{D}(\cdots) \mathrm{d} x_{D}+x_{D}(\cdots) \mathrm{d} y_{D}\right) \\
+\frac{h\left(x_{D}^{\nu_{0}-v} y_{D}^{\nu_{0}}, x_{D}^{\nu_{1}-u} y_{D}^{\nu_{1}}\right)}{y_{D}^{\nu_{D(h)}^{(h)}}} x_{D}^{\nu_{0}-v+\nu_{1}-u-1} \mathrm{~d} x_{D}
\end{array}
$$

is generically transverse to $y_{D}=0$.
We are now in position to prove Theorem 2 stated in the introduction.
Theorem 3. Let $C_{N, \nu_{0}, \nu_{1}}$ be the curve defined by

$$
y^{N \nu_{0}}-x^{N \nu_{1}}=0
$$

where $N>0$ and $\nu_{0} \leq \nu_{1}$ are relatively prime with $N \nu_{0}>1$. Then for any $k \in\left\{1, \ldots,\left[\frac{N \nu_{0}}{2}\right]\right\}$ there exist $C \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{1}}\right)$ such that

$$
\mathfrak{s}(C)=k
$$

Proof. For $N=1$ the result follows from Proposition 2.3. Suppose $N \geq 3$ and the result is true for any curve $C_{N^{\prime}, \nu_{0}, \nu_{1}}$ with $1 \leq N^{\prime}<N$. Let $k \in\left\{1, \ldots,\left[\frac{N \nu_{0}}{2}\right]\right\}$. For now, suppose that $k \geq \nu_{0}+1$. Let us consider $C^{\prime} \in \operatorname{Top}\left(C_{N-2}, \nu_{0}, \nu_{1}\right)$ such
that $\mathfrak{s}\left(C^{\prime}\right)=k-\nu_{0}$ and let $\{\omega, \eta\}$ be a Saito basis for C^{\prime}. According to the Saito criterion, if f is a reduced equation of C^{\prime} then

$$
\omega \wedge \eta=u f \mathrm{~d} x \wedge \mathrm{~d} y
$$

where $u \in \mathbb{C}\{x, y\}$ is a unit. Both 1 -forms ω and η can be supposed of multiplicity $k-\nu_{0}$ and are dicritical along the central component of the desingularization process of C^{\prime}, that is the same of C_{N-2}. Consider f_{ω} and f_{η} two reduced equations of analytical curves invariants for respectively ω and η such that after desingularization, $f_{\omega}=0$ and $f_{\eta}=0$ are attached to the common central component, transversal the one to the other and both transversal to C_{N-2}. By construction, these two curves are equisingular to $y^{\nu_{0}}-x^{\nu_{1}}=0$. Now, we can write

$$
f_{\eta} \omega \wedge f_{\omega} \eta=u f_{\omega} f_{\eta} f \mathrm{~d} x \wedge \mathrm{~d} y
$$

Since $f_{\eta} \omega$ and $f_{\omega} \eta$ leave both invariant the curve $f f_{\eta} f_{\omega}=0$, the relation above is the Saito criterion for $f_{\omega} f_{\eta} f=0$. Setting $C=\left\{f_{\omega} f_{\eta} f=0\right\} \in \operatorname{Top}\left(C_{N, \nu_{0}, \nu_{0}}\right)$, we obtain

$$
\mathfrak{s}(C)=\min \left\{\nu\left(f_{\eta} \omega\right), \nu\left(f_{\omega} \eta\right)\right\}=\nu_{0}+k-\nu_{0}=k
$$

Suppose now that, $k \leq\left[\frac{\nu_{0}}{2}\right]$. The initial assumptions ensure that $\nu_{0} \geq 2$. Applying the result for $N=1$ yields a curve $C^{\prime}=\{f=0\} \in \operatorname{Top}\left(C_{1, \nu_{0}, \nu_{1}}\right)$ such that $\mathfrak{s}\left(C^{\prime}\right)=$ k and a Saito basis $\{\omega, \eta\}$ with $\nu(\omega)=k \leq \nu(\eta)$ for C^{\prime} such that the 1 -form ω is dicritical along the central component of the desingularization process of C^{\prime}, that is the same of $C_{1, \nu_{0}, \nu_{1}}$. Choose $N-1$ curves $f_{1}=0, \ldots, f_{N-1}=0$ invariant for ω attached to the central component and transversal to C^{\prime}. From the Saito criterion $\omega \wedge \eta=u f \mathrm{~d} x \wedge \mathrm{~d} y$ for C^{\prime}, we can write

$$
\omega \wedge f_{1} \cdots f_{N-1} \eta=u f_{1} \cdots f_{N-1} f \mathrm{~d} x \wedge \mathrm{~d} y
$$

which is the Saito criterion for $f_{1} \cdots f_{N-1} f=0$. As a consequence, setting $C=$ $\left\{f_{1} \cdots f_{N-1} f=0\right\}$, we get $C \in \operatorname{Top}\left(C_{N}, \nu_{0}, \nu_{1}\right)$ and

$$
\mathfrak{s}(C)=\min \left\{\nu(\omega), \nu\left(f_{1} \cdots f_{N-1} \eta\right)\right\}=k .
$$

Finally, suppose that $k \in\left\{\left[\frac{\nu_{0}}{2}\right]+1, \ldots, \nu_{0}\right\}$. Consider the curve $C^{\prime}=\{f=0\}$ where $f=y^{2 \nu_{0}}-x^{2 \nu_{1}}$ and its Saito basis given by

$$
\left\{\omega=\nu_{1} y \mathrm{~d} x-\nu_{0} x \mathrm{~d} y, \mathrm{~d} f\right\}
$$

For any function h, we can write

$$
\omega \wedge(\mathrm{d} f+h \omega)=2 \nu_{0} \nu_{1} f \mathrm{~d} x \wedge \mathrm{~d} y
$$

We choose $h=x^{k-1}$. In that case,

$$
\nu_{D}(h)=\nu_{0}(k-1) \leq \nu_{0}\left(\nu_{0}-1\right) \leq 2 \nu_{1} \nu_{0}-1-\nu_{1}-\nu_{0}
$$

Following Lemma 2.5, the 1 -form $\mathrm{d} f+h \omega$ is still dicritical along the central component D of the desingularization process of C^{\prime}. We fix $N-2$ curves $f_{1}=0, f_{2}=$
$0, \ldots, f_{N-2}=0$ invarant for $\mathrm{d} f+h \omega$ attached to the central component D and transversal to C^{\prime}. The Saito criterion leads to

$$
f_{1} \cdots f_{N-2} \omega \wedge(\mathrm{~d} f+h \omega)=2 \nu_{0} \nu_{1} f_{1} \cdots f_{N-2} f \mathrm{~d} x \wedge \mathrm{~d} y
$$

which is the Saito basis for $C=\left\{f_{1} \cdots f_{N-2} f=0\right\}$. Thus

$$
\begin{aligned}
\mathfrak{s}(C) & =\min \left\{\nu\left(f_{1} \cdots f_{N-2} \omega\right), \nu(\mathrm{d} f+h \omega)\right\} \\
& =\min \left\{(N-2) \nu_{0}+1,2 \nu_{0}-1, k\right\}=k
\end{aligned}
$$

since $N \geq 3$.
It remains to treat the case $N=2$. Suppose first $\nu_{0} \geq 2$. If $k \leq\left[\frac{\nu_{0}}{2}\right]$ the same argument as before ensures the property. Suppose that $k \in\left\{\left[\frac{\nu_{0}}{2}\right]+1, \ldots, \nu_{0}\right\}$. Notice that according to [9], the property is true for $k=\nu_{0}$. Thus we can suppose $k \leq \nu_{0}-1$. Consider the curve $C^{\prime}=\left\{f=y^{\nu_{0}}-x^{\nu_{1}}=0\right\}$ and its Saito basis given by

$$
\left\{\omega=\nu_{1} y \mathrm{~d} x-\nu_{0} x \mathrm{~d} y, \mathrm{~d} f\right\}
$$

For any function h, we get $\omega \wedge(\mathrm{d} f+h \omega)=\nu_{0} \nu_{1} f \mathrm{~d} x \wedge \mathrm{~d} y$. In particular, for $h=x^{k-1}$ we have

$$
\nu_{D}(h)=\nu_{0}(k-1) \leq \nu_{0}\left(\nu_{0}-2\right) \leq \nu_{1} \nu_{0}-1-\nu_{1}-\nu_{0}
$$

which is true under the assumption the assumption that $\nu_{0} \geq 2$. Following Lemma 2.5 , the $1-$ form $\mathrm{d} f+h \omega$ is dicritical along the central component D of the desingularization process of C^{\prime}. We choose one curve $f_{1}=0$ invariant for $\mathrm{d} f+h \omega$ attached to D and transversal to C^{\prime}. The Saito criterion leads to

$$
f_{1} \omega \wedge(\mathrm{~d} f+h \omega)=\nu_{0} \nu_{1} f_{1} f \mathrm{~d} x \wedge \mathrm{~d} y
$$

which $\left\{f_{1} \omega, \mathrm{~d} f+h \omega\right\}$ is the Saito basis for $C=\left\{f_{1} f=0\right\}$. Expanding the expression of the form $\mathrm{d} f+h \omega$, we get

$$
\nu(\mathrm{d} f+h \omega)=k
$$

and thus

$$
\begin{aligned}
\mathfrak{s}(C) & =\min \left\{\nu\left(f_{1} \omega\right), \nu(\mathrm{d} f+h \omega)\right\} \\
& =\min \left\{\nu_{0}+1, k\right\}=k
\end{aligned}
$$

For $N=2$ and $\nu_{0}=1$, then the set $\left\{1, \ldots,\left[\frac{N \nu_{0}}{2}\right]\right\}$ reduces to integer 1 and the property is clear regarless the value of ν_{1}, which concludes the proof of the theorem.

References

[1] P. Fortuny Ayuso and J. Ribón. Construction of a basis of Kähler differentials for generic plane branches. arXiv, (2405.09684), 2024.
[2] C. Camacho, A. Lins Neto, and P. Sad. Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, 1984.
[3] F. Cano and N. Corral. Absolutely dicritical foliations. Int. Math. Res. Not. IMRN, 8:1926-1934, 2011.
[4] F. Cano, N. Corral, and D. Senovilla-Sanz. Computing a Saito basis from a standard basis. arXiv, (2404.00316), 2024.
[5] J. Cano, P. Fortuny Ayuso, and J. Ribón. The local Poincaré problem for irreducible branches. Rev. Mat. Iberoam., 37(6):2229-2244, 2021.
[6] N. Corral, M. E. Hernandes, and M. E. Rodrigues Hernandes. Dicritical foliation and semiroots of plane branches. ArXiv, (2304.01047), 2024.
[7] C. Delorme. Sur les modules des singularités des courbes planes. Bulletin de la Société Mathématique de France, 106:417-446, 1978.
[8] Y. Genzmer. Dimension of the moduli space of a germ of curve in \mathbb{C}^{2}. Int. Math. Res. Not. IMRN, 5:3805-3859, 2022.
[9] Y. Genzmer. Number of moduli for a union of smooth curves in $\left(\mathbb{C}^{2}, 0\right)$. J. Symb. Comput., 113:148-170, 2022.
[10] Y. Genzmer. The Saito vector field of a germ of complex plane curve. arXiv, (2403.06587), 2024.
[11] Y. Genzmer. The Saito module and the moduli of a germ of curve in $\left(\mathbb{C}^{2}, 0\right)$. Annales de l'Institut Fourier, 2024.
[12] Y. Genzmer and M. E. Hernandes. On the Saito basis and the Tjurina number for plane branches. Trans. Amer. Math. Soc., 373(5):3693-3707, 2020.
[13] Y. Genzmer and E. Paul. Moduli spaces for topologically quasi-homogeneous functions. Journal of Singularities, (14):3-33, 2016.
[14] H. Grauert. Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Études Sci. Publ. Math., 5:233-292, 1960.
[15] A. Hefez and M.E. Hernandes. Standard bases for local rings of branches and their modules of differentials. Journal of Symbolic Computation, 42(1):178191, 2007. Effective Methods in Algebraic Geometry (MEGA 2005).
[16] C. Hertling. Formules pour la multiplicité et le nombre de Milnor d'un feuilletage sur ($\left.\mathbb{C}^{2}, 0\right)$. Ann. Fac. Sci. Toulouse Math. (6), 9(4):655-670, 2000.
[17] A. Lins Neto. Construction of singular holomorphic vector fields and foliations in dimension two. J. Differential Geom., 26(1):1-31, 1987.
[18] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(2):265-291, 1980.
[19] M. Toma. A short proof of a theorem of Camacho and Sad. Enseign. Math. (2), 45(3-4):311-316, 1999.
[20] O. Zariski. On the topology of algebroid singularities. Amer. J. Math., 54(3):453-465, 1932.
[21] O. Zariski. Le problème des modules pour les branches planes. Hermann, Paris, second edition, 1986. Course given at the Centre de Mathématiques de l'École Polytechnique, Paris, October-November 1973, With an appendix by Bernard Teissier.

Yohann Genzmer
Université Paul Sabatier
Institut de Mathématiques de Toulouse
118 route de Narbonne
F-31062, Toulouse Cedex 9
France.
yohann.genzmer@math.univ-toulouse.fr
Marcelo Escudeiro Hernandes
Universidade Estadual de Maringá
Departamento de Matemática
Av. Colombo 5790
Maringá-PR 87020-900
Brazil.
mehernandes@uem.br

[^0]: *The first-named author was partially supported by the Réseau Franco-Brésilien en Mathématiques (GDRI-RFBM). The second-named author was partially supported by CNPq-Brazil.

[^1]: ${ }^{1}$ A extreme component of E is an irreducible component that intersects only one other irreducible component of E.

