The list of the submitted papers is here
- A. Dieuleveut, G. Fort, E. Moulines and H-T. Wai. Stochastic Approximation beyond Gradient for Signal Processing and Machine Learning. Submitted. HAL-03979922. IEEE Trans Signal Processing,71:3117-3148, 2023.
- G. Fort and E. Moulines. Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization. September 2022, revised in December 2022. Accepted for publication in Statistics and Computing, March 2023. HAL-03781216
- G. Fort, B. Pascal, P. Abry and N. Pustelnik. Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers. HAL-03611079. IEEE Trans. Signal Processing, 71:888-900, 2023.
- G. Fort, E. Moulines, P. Gach. Fast Incremental Expectation Maximization for non-convex finite-sum optimization: non asymptotic convergence bounds, with a Supplementary material. Matlab codes on Github. Revised in December 2020, under the title « Fast Incremental Expectation Maximization for finite-sum optimization: asymptotic convergence« . Accepted in Statistics and Computing, May 2021.
- S. Crepey, G. Fort, E. Gobet and U. Stazhynski. Uncertainty quantification for Stochastic Approximation limits using Chaos Expansion. Nov17, HAL-01629952. SIAM-ASA Journal of Uncertainty Quantification, 8(3):1061-1089, 2020.
- D. Barrera, S. Crepey, B. Diallo, G. Fort, E. Gobet and V. Stazhinksi. Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations, ESAIM Proc (CEMRACS 2017), 65:182–218, 2019.
- G. Fort, B. Jourdain, T. Lelièvre and G. Stoltz. Convergence and Efficiency of Adaptive Importance Sampling techniques with partial biasing. Journal of Statistical Physics, 171(2):220-268, 2018.
- G. Fort, E. Ollier and A. Leclerc-Samson. Stochastic Proximal Gradient Algorithms for Penalized Mixed Models. arXiv:1704.08891. Statistics and Computing, 29(2):231-253, 2019.
- G. Fort, E. Gobet and E. Moulines. MCMC design-based non-parametric regression for rare event. Application to nested risk computation. Monte Carlo Methods and Applications, 23(1):21–42, 2017.
- G. Morral, P. Bianchi and G. Fort. Success and Failure of Adaptation-Diffusion Algorithms for Consensus in Multi-Agent Networks. IEEE Trans. Signal Processing, 65(11):2798-2813, 2017.
- Y. Atchadé, G. Fort and E. Moulines. On perturbed proximal gradient algorithms, Submitted in February 2014 under the title « On stochastic proximal gradient algorithms ». arXiv:1402:2365 math.ST. JMLR, 18(10):1-33, 2017.
- H. Braham, S. Ben Jemaa, G. Fort, E. Moulines and B. Sayrac. Spatial prediction under location uncertainty in cellular networks, arXiv:1510:03638, IEEE Trans. Wireless Communications, 15(11):7633-7643, 2016.
- H. Braham, S. Ben Jemaa, G. Fort, E. Moulines and B. Sayrac. Fixed Rank Kriging for Cellular Coverage Analysis. ArXiv:1505:07062, IEEE Trans. Vehicular Technology, 66(5):4212-4222, 2016
- A. Schreck, G. Fort, E. Moulines and M. Vihola.Convergence of Markovian Stochastic Approximation with discontinuous dynamics . arXiv math.ST 1403.6803, submitted in March 2014. SIAM J. Control Optim., 54(2):866-893, 2016
G. Fort, B. Jourdain, T. Lelièvre and G. Stoltz. Self-Healing Umbrella Sampling: convergence and efficiency. arXiv math.PR 1410.2109, submitted in October 2014. Revised in April 2015, Accepted Nov 15. Statistics and Computing, 27(1):147-168, 2017
- .A. Schreck, G. Fort, S. Le Corff and E. Moulines. A shrinkage-thresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection. arXiv math.ST 1312.5658. IEEE J. of Selected Topics in Signal Processing, 10(2):366-375, 2016.
- A. Durmus, G. Fort and E. Moulines. Subgeometric rates of convergence rates in Wasserstein distance for Markov chains.
arXiv:1402.4577math.PR. Ann. inst. Henri Poincaré, 52(4):1799-1822, 2016.
- G. Fort. Central Limit Theorems for Stochastic Approximation with Controlled Markov Chain Dynamics. EsaimPS, 19:60-80, 2015. arXiv math.PR 1309.311C.
- Andrieu, G. Fort and M. Vihola. Quantitative convergence rates for sub-geometric Markov chains. Advances in Applied Probability, 52(2):391-404, 2015. arXiv math.PR 1309.0622
- G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. Convergence of the Wang-Landau algorithm. Math. Comp., 84:2297-2327, 2015. arXiv:1207.6880 [math.PR]
- G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz. Efficiency of the Wang-Landau algorithm. App. Math. Res. Express, 2914(2):275-311, 2014. arXiv:1310.6550.
- R. Bardenet, O. Cappé, G. Fort and B. Kegl. Adaptive MCMC with Online Relabeling. (accepted for publication in 2013) Bernoulli, 21(3):1304-1340, 2015. arXiv:1210.2601 [stat.CO]
- P. Bianchi, G. Fort and W. Hachem. Performance of a Distributed Stochastic Approximation Algorithm, IEEE Trans. on Information Theory, 59(11):7405-7418, 2013.
- S. Le Corff and G. Fort. Online Expectation Maximization-based algorithms for inference in Hidden Markov Models. Electronic Journal of Statistics, 7:763-792, 2013. arXiv math.ST 1108-3968. Supplement paper, math.ST 1108-4130.
- G. Fort, E. Moulines, P. Priouret and P. Vandekerkhove. A Central Limit Theorem for Adaptive and Interacting Markov Chains.arXiv:1107.2574 Supplement paper Bernoulli 20(2):457-485, 2014.
- A. Schreck, G. Fort and E. Moulines. Adaptive Equi-energy sampler : convergence and illustration. ACM Transactions on Modeling and Computer Simulation (TOMACS), 23(1):Article 5 – 27 pages, 2013.
- S. Le Corff and G. Fort. Convergence of a particle-based approximation of the Block online Expectation Maximization algorithm, ACM Transactions on Modeling and Computer Simulation (TOMACS) 23(1):Article2 – 22 pages, 2013.
- G. Fort, E. Moulines, P. Priouret and P. Vandekerkhove. A simple variance inequality for U-statistics of a Markov chain with Applications. Statistics & Probability Letters 82(6):1193-1201, 2012.
- G. Fort, E. Moulines and P. Priouret. Convergence of adaptive and interacting Markov chain Monte Carlo algorithms. Ann. Statist. 39(6):3262-3289, 2012. [Supplementary material],
- Y. Atchadé and G. Fort. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels, part II. Bernoulli 18(3):975-1001, 2012.
- M. Kilbinger, D. Wraith, C. P. Robert, K. Benabed, O. Cappé, J.F.Cardoso, G. Fort, S. Prunet, and F.R.Bouchet. Bayesian model comparison in cosmology with Population Monte Carlo. MNRAS 405(4):2381-2390, 2010. ArXiv astro-ph.CO/0912.1614
- P. Etoré, G. Fort, B. Jourdain and E. Moulines. On adaptive stratification. Annals of Operations Research 189(1):127-154, 2011. ArXiv math.PR/0809.1135
- Y. Atchadé and G. Fort. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16(1):116-154, 2010. ArXiv math.PR/0807.2952
- S. Connor and G. Fort. State-dependent Foster-Lyapunov criteria for subgeometric convergence of Markov chains. Stoch. Processes Appl.119:4176-4193, 2009 ArXiv math.PR/0901.2453
- D.Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.F. Cardoso, G. Fort, S. Prunet and C.P. Robert. Estimation of cosmological parameters using adaptive importance sampling. Phys. Rev. D. 80(2), 2009.
- R. Douc, G. Fort, E. Moulines and P. Priouret. Forgetting of the initial distribution for Hidden Markov Models. Stoch. Process Appl. 119(4):1235-1256, 2009. ArXiv.math.ST/0703836.
- R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process Appl., 119(3):897-923, 2009. ArXiv math.ST/0605791
- G. Fort, S. Meyn, E. Moulines and P. Priouret. The ODE methog for the stability of skip-free Markov Chains with applications to MCMC. Ann. Appl. Probab. 18(2) :664-707, 2008.
- F. Forbes and G. Fort. A convergence theorem for Variational EM-like algorithms: application to image segmentation. IEEE Trans on Image Processing, 16(3):824(837, 2007.
- G. Fort, S. Lambert-Lacroix, J. Peyre. Réduction de dimension dans les modèles généralisés : application à la classification de données issues de biopuces. Journal de la SFDS, 146(1-2):117-152, 2005. Matlab code and Data set. Erratum on the research report TR0471.
- G. Fort and S. Lambert-Lacroix. Classification using Partial Least Squares with Penalized Logistic Regression. Bioinformatics, 21(7):1104-1111, 2005. Matlab codes and Data set.
- G. Fort and G.O. Roberts. Subgeometric ergodicity of strong Markov processes. Ann. Appli. Probab. 15(2):1565-1589, 2005.
- R. Douc, G. Fort, E. Moulines and P. Soulier. Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14(3):1353-1377, 2004.
- G. Fort, E. Moulines, G.O. Robserts and J.S. Rosenthal. On the geometric ergodicity of hybrid samplers. J. Appl. Probab. 40(1):123-146, 2003.
- G. Fort and E. Moulines. Polynomial ergodicity of Markov transition kernels. Stoch. Process Appl. 103(1),57-99, 2003.
- G. Fort and E. Moulines. Convergence of the Monte Caro EM for curved exponential families. Ann. Stat. 31(4):1220-1259, 2003.
- G. Fort and E. Moulines. V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Stat. Probab. Lett. 49(4):401-410, 2000.
MathScinet : here
Google Scholar : here