Technical Report
A. Dieuleveut, G. Fort and H-T. Wai. Federated Majorize-Minimization : beyond parameter aggregation (former title: Federated Majorize-Minimization for large scale learning). 1st submission in May 2022; revised in July 2025.
G. Fort and M. Pereyra. Monte Carlo. For publication on the « Histoire du Traitement du Signal » webpage of the GRETSI association . June 2025.
G. Fort, F. Forbes and H.-D. Nguyen. Sequential Sample Average Majorization-Minimization . June 2024, Submitted.
G. Fort, E. Moulines, P. Gach. Fast Incremental Expectation Maximization algorithm: √n iterations for an ε-stationary point ?, March
J. Chevallier and G. Fort. Sampling Nonsmooth Log-Concave Densities: A Comparative Study of Primal-Dual Based Proposal Distributions. September 2024, Submitted.
P. Abry, J. Chevallier, G. Fort and B. Pascal. Hierarchical Bayesian Estimation of COVID-19 Reproduction Number . September 2024, Submitted.
2020. HAL-02509621. (submitted to SSP 2020; conference canceled due to CoVID-19; the paper is no more submitted).
J.F. Aujol, C. Dossal, G. Fort, E. Moulines. Rates of Convergence of Per turbed FISTA-based algorithms . July 2019. HAL-02182949.
Y. Atchadé, G. Fort, E. Moulines. On stochastic Proximal-Gradient algorithms . February 2014. ArXiv:1402.2365v1 (part of this paper is unpublished).
G. Fort. Fluid limit-based tuning of some hybrid MCMC samplers . Dec 2007.
C. Andrieu and G. Fort. Explicit control of subgeometric ergodicity . Rapport de Recherche, 05:17, 2005.
G. Fort. Partial Least Squares for classification and feature selection in Microarray gene expression data . Dec. 2004.
G. Fort. Computable bounds for V-geometric ergodicity of Markov transition kernels . Rapport de Recherche, Univ. J. Fourier, RR 1047-M.
Mentions Légales