
Chapitre 3

Vecteurs (1ère partie)

3.1 Historique

La géométrie que nous étudions au lycée est celle développée par Euclide (3ième siècle avant
J.C.). L’idée de transformer des problèmes géométriques en des problèmes algébriques en utilisant
des coordonnées est due au mathématicien et philosophe Descartes au 17ième siècle. Quant à lui, Le
développement des espaces vectoriels date du 19ième siècle et est le fruit de travaux de nombreux
mathématiciens (Bolzano, Cayley, Möbius, Peano, Grassman,. . . ).

3.2 Translation et vecteurs

3.2.1 Translation et vecteur associé

Définition 3.2.1. Soient A et B deux points du plan donnés.

1. La translation t−−→
AB

qui transforme le point A en le point B, associe à tout point M du plan
un nouveau point N tel que le quadrilatère ABNM soit un parallélogramme.

2. A cette translation, nous associons le vecteur
−−→
AB qui symbolise le déplacement de A vers B

(ou de M vers N). Il est commode de représenter un tel objet par une flèche allant de A
jusqu’au point B

Remarque. 1. De manière plus pratique, étant donné deux points distincts A et B du plan, il est
possible de tracer le vecteur permettant de les relier (en dessinant une flèche). Cette flèche
est alors déterminé par plusieurs choses

• sa direction qui est définie par l’unique droite passant par les points A et B ;

• son sens qui précise si nous allons du point A vers le point B ou le contraire ;

• sa norme qui correspond à la distance entre les points A(xa; yA) et B(xB ; yB).
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28 CHAPITRE 3. VECTEURS (1ÈRE PARTIE)

ces caractéristiques coïncident avec la définition d’un vecteur proposée en Physique.
Ainsi, étant donné un vecteur

−−→
AB et un point M , il est facile de construire le point M ′,

translaté du point M , en « déplaçant la flèche
−−→
AB »(tout en s’assurant que le parallélisme

est conservé) afin de l’apposé au point M pour obtenir le point M ′ à l’extrémité de cette flèche.

2. Lorsque les points A et B sont confondus, le vecteur que nous obtenons
−→
AA est communément

appelé vecteur nul et noté
−→
0 .

3. Bien entendu, une fois construit le vecteur
−−−→
MM ′ à partir du vecteur

−−→
AB, ces deux vecteurs

sont égaux. En effet, ils conduisent tout les deux à la même translation.

3.2.2 Egalité de deux vecteurs

Détaillons un peu plus le dernier point de la remarque précédente. Nous avons la propriété
suivante

Propriétés 1. Soient A, B, C et D quatre points distincts du plan. Les assertions suivantes sont
équivalentes

1.
−−→
AB =

−−→
CD ;

2. D est l’image de C par la translation qui transforme A en B ;

3. les segments [AD] et [BC] ont le même milieu ;

4. ABDC est un parallélogramme.

Remarque. Il est important de prendre à l’ordre des lettres du parallélogramme (obtenu via l’égalité
−−→
AB =

−−→
CD, il faut inverser l’ordre des points C et D. La propriété impliquant les milieux des

segments [AD] et [BC] provient d’une caractérisation des parallélogrammes.

3.3 Somme de deux vecteurs

Comme nous allons le voir, il est possible d’additionner les vecteurs afin d’en obtenir un nouveau.
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Propriétés 2. Soient A, B et C trois points. Appliquer successivement la translation t−−→
AB

qui trans-
forme A en B, puis la translation t−−→

BC
qui transforme B en C, revient à appliquer la translation

t−→
AC

qui transforme A en C.

Ceci conduit à la définition suivante

Définition 3.3.1 (Relation de Chasles). Soient A, B et C trois points, le vecteurs
−→
AC obtenu en

appliquant successivement les translations t−−→
AB

et t−−→
BC

est appelé somme des vecteurs
−−→
AB et

−−→
BC.

Nous écrivons alors −−→
AB +

−−→
BC =

−→
AC

cette égalité s’appelle la relation de Chasles.

Remarque. 1. Pour n’importe quels triplets de points A, B et C la relation de Chasles est
toujours vérifiée.

2. En particulier,
−−→
AB +

−−→
BA =

−→
AA =

−→
0 . Dans ce cas, nous dirons que

−−→
BA est l’opposé de

−−→
AB.

C’est-à-dire, −−→
BA = −

−−→
AB

3. Dans la figure ci-dessus, il est évident que −→u =
−−→
AB et −→v =

−−→
BC. Par suite, −→u + −→v =

−→
AC.

3.4 Vecteur et repère du plan

Voyons ce qui peut se produire lorsque nous introduisons un repère du plan (O; I; J) et des
coordonnées. Dans tout ce qui suit, un tel repère sera supposé fixé.

3.4.1 Définition et propriétés

Définition 3.4.1. Soit −→u un vecteur du plan. Par la translation de vecteur −→u , le point O se
transforme en M . Nous dirons alors que les coordonnées du vecteur −→u sont celles du points M
dans le repère (O; I; J). Autrement dit, si M(x; y) nous aurons

−→u
(

x
y

)
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Remarque. D’un point de vue pratique,
(

x
y

)

signifie que pour obtenir le M à partir du point O il

faut se déplacer (dans le repère) « x fois vers la droite et y fois vers le haut ».

L’introduction d’un repère et l’utilisation de coordonnées pour repérer un vecteur simplifie
beaucoup de choses.

Propriétés 3. 1. Egalité entre deux vecteurs : deux vecteurs sont égaux si et seulement si, leurs
coordonnées sont égales. C’est-à-dire

−→u
(

x
y

)

= −→v
(

x′

y′

)

⇐⇒ x = x′ et y = y′.

2. Somme de vecteurs : soient −→u
(

x
y

)

et −→v
(

x
y

)

alors

−→u + −→v =
(

x + x′

y + y′

)

.
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3.4.2 Coordonnées d’un vecteur

Poursuivons notre étude, voyons comment déterminer les coordonnées du vecteur
−−→
AB à partir

des coordonnées des points A(xA; yA) et B(xB ; yB).

Proposition 8. Soient A(xA, yA) et B(xB ; yB) deux points du plan. Nous avons alors les coordon-

nées suivantes
−−→
AB

(

xB − xA

yB − yA

)

.

Remarque. Il faut être prudent dans cette relation et observer qu’il faut faire la différence des
coordonnées du point B (l’extrémité) avec celles du point A (le point de départ du vecteur). Nous
retrouvons une fois de plus la relation de Chasles : le chemin partant du point A pour arriver
au point C pour ensuite remonter jusqu’au point B est le même que celui qui part de A pour
directement arriver en B.

Démonstration. Notons par M(x; y) le point obtenu en effectuant la translation de l’origine O par

le vecteur
−−→
AB. Par définition, cela signifie aussi

−−→
AB

(

x
y

)

. Déterminons une expression de x et de y

en fonction des coordonnées des points A et B. Pour cela, notons que par construction, nous avons−−→
OM =

−−→
AB. Ainsi, en utilisant la propriété (1), les segments [AM ] et [OB] ont le même milieu. Nous

pouvons donc calculer les coordonnées de celui-ci à partir des coordonnées des points impliqués.
C’est-à-dire,

xA + x

2
=

0 + xB

2
et

yA + y

2
=

0 + yB

2

D’où, x = xB − xA et y = yB − yA. Ce qui est bien le résultat attendu.

Exemple 3.4.1. Soient A(2; 1) et B(3; −1) alors
−−→
AB

(

3 − 2
−1 − 1

)

=
(

1
−2

)

.
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3.4.3 Produit d’un vecteur par un nombre réel

Comme nous venons de le voir, l’addition de vecteur permet d’en obtenir un nouveau. Il est
également possible de multiplier un vecteur par un nombre réel pour avoir un nouveau vecteur.

Définition 3.4.2. Soient k ∈ R et −→u =
(

x
y

)

. Le vecteur −→v =
(

kx
ky

)

est alors noté k−→u .

Remarque. Nous admettons que le vecteur k−→u ainsi obtenu ne dépend pas du choix du repère
(O; I; J) sous-jacent.

Exemple 3.4.2. Si −→u =
(

2
−1

)

alors −3−→u =
(

−6
3

)

.

3.5 Applications géométriques

Comme nous le verrons par la suite, l’introduction d’un repère dans une figure fournit un outil
supplémentaire pour faire de la géométrie. Nous reverrons, en exercice, de quelle manière procéder
et comment les coordonnées cartésiennes permettent de revisiter certains résultats vu au collège.

3.5.1 Coordonnées du milieu d’un segment

A partir de deux points du plan A et B, voyons comment déterminer les coordonnées du milieu
du segment [AB].

Proposition 9. Considérons le plan muni d’un repère (O; I; J) ainsi que des points A(xA; yA) et
B(xB ; yB). Le milieu M du segment [AB] a pour coordonnée

M
(xA + xB

2
;

yA + yB

2

)

Remarque. Les coordonnées du point M correspondent à la moyenne arithmétique des coordonnées
des points A et B.

Voyons ceci sur un exemple.

Exemple 3.5.1. Dans un repère du plan, considérons les points suivants

A(1; −2), B(−3; 0) et C(−1; 2).

1. Le milieu K du segment [AB] a pour coordonnées

xK =
xA + xB

2
=

1 − 3
2

= −1 et yK =
yA + yB

2
=

−2 + 0
2

= −1.

Autrement dit, K(−1; −1).

2. Le symétrique de B′ de B par rapport au point C, est tel que C est le milieu du segment
[BB′]. Ses coordonnées vérifient donc :

xB′ + xB

2
= xC et

yB′ + yB

2
= yC .

D’où xB′ = 2xC − xB = −2 − (−3) = 1 et yB′ = 2yC − yB = 4. C’est à dire, B′(1; 4).
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3.6 Calcul de distance dans un repère orthornormée

Dans un repère orthonormée il est possible d’utiliser les coordonnées pour calculer des dis-
tances. Pour cela, nous devrons utiliser la fonction racine carrée dont nous rappelons ci-dessous
quelques propriétés.

3.6.1 Distance entre deux points du plan

Proposition 10. Considérons le plan muni d’un repère (O; I; J) ainsi que des points A(xA; yA) et
B(xB ; yB). La distance entre les points A et B vaut

AB =
√

(xA − xB)2 + (yA − yB)2,

l’unité de longueur étant l’unité commune aux deux axes.

Remarque. Sans grande surprise, la présence du carré dans la formule permet de constater que
AB = BA.

Démonstration. Le fait que le repère soit orthonormé est essentiel et permet d’appliquer le Théo-
rème de Pythagore (cf. figure ??). Sans perdre en généralité, nous pouvons supposer que xA < xB

et yA > yB (essentiellement, les autres cas de figures sont similaires). Soit E le point du plan ayant
même abscisse que le point A et la même ordonnée que le point B. Les axes du repère étant ortho-
gonaux, le triangle AEB est donc rectangle en E. Il est alors possible d’appliquer le Théorème de
Pythagore, qui nous assure que

AB2 = AE2 + BE2.

or BE = xB − xA et AE = yA − yB. D’où, AB2 = (xB − xA)2 + (yB − yA)2. Une distance étant
positive, nous en déduisons que

AB =
√

(xB − xA)2 + (yB − yA)2

Nous allons poursuivre notre étude des repères du plan, qui nous ont permis d’associer des
coordonnées à un point, en introduisant la notion de vecteurs.

3.7 Propriétés géométriques : rappels du collège

Dans cette section nous rappelons quelques propriétés élémentaires qui seront utiles pour ré-
soudre certains exercices.

Proposition 11. Soient A, B et C trois points du plan. Ces points sont alignés si et seulement si
AB + BC = AC.

Théorème 12 (Pythagore). Soit ABC un triangle (non aplati). L’équivalence suivante est vérifiée :

AB2 + BC2 = AC2 ⇐⇒ ABC est un triangle rectangle en B

Voici quelques propriétés des parallélogrammes .
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Proposition 13. Soit ABCD un quadrilatère.

1. ABCD est un parallélogramme si et seulement si ses côtés opposés sont deux à deux parallèles.

2. ABCD est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.

3. ABCD est un parallélogramme si et seulement si ses côtés opposés sont deux à deux de
même longueur.

Voici quelques propriétés des losanges.

Proposition 14. Soit ABCD un quadrilatère.

1. ABCD est un losange si et seulement si ses côtés ont même longueur.

2. ABCD est un losange si et seulement si ses diagonales se coupent perpendiculairement en
leur milieu.

Voici quelques propriétés des rectangles.

Proposition 15. Soit ABCD un quadrilatère.

1. ABCD est un rectangle si et seulement il admet trois angles droits

2. ABCD est un rectangle si et seulement si ses diagonales ont même longueur et se coupent
en leur milieu.

3. Si ABCD est un parallélogramme admettant un angle droit alors il s’agit d’un rectangle.

Enfin, observons qu’un carré combine les propriétés des losanges et des rectangles. En consé-
quence, pour démontrer qu’un quadrilatère ABCD est un carré il suffit de prouver qu’il s’agit à la
fois d’un losange et d’un rectangle.

3.8 Exercices potentiels

• Vecteur (égalité, translation) : exercices 13, 15, 16p124

• Coordonnées de vecteurs : exercices 20, 24, 26p125

• Coordonnées et distances : exercices 28, 32, 37page125

• Somme de vecteurs : exercices 41, 45, 47, 48, 49page126 − 127.
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3.9 Bilan du chapitre

Voici les savoirs faire à acquérir dans ce chapitre :

• Repérer un point donné du plan, placer un point connaissant ses coordonnées.

• Calculer la distance de deux points connaissant leurs coordonnées.

• Calculer les coordonnées du milieu d’un segment.

• Utiliser les propriétés des triangles, des quadrilatères, des cercles.

• Utiliser les propriétés des symétries axiale ou centrale.

3.10 Pour aller plus loin

3.11 Curiosité en grande dimension

Il n’est pas vraiment possible pour l’être humain de se représenter un objet en quatre dimension
(ou plus). Il est cependant possible de conceptualiser ce qui doit se produire. Imaginons que nous
surplombions un monde vivant dans une feuille en papier, un monde en deux dimension. Si nous
prenions un cube de notre univers, les habitants de ce monde ne pourraient l’apercevoir qu’au
moment ou une partie du cube traverse la feuille de papier et pénètre dans leur monde. En faisant
ceci, les habitants observeraient une tranche du cube et seraient face à un carré. Il n’est donc pas
difficile de généraliser ce procédé en se disant que si des êtres nous observaient depuis un monde
en quatre dimension et s’amusaient à vouloir nous montrer un cube de leur univers (en quatre
dimensions) nous ne verrions qu’une tranche de celui-ci et ferions face à un cube normal.

Bien que notre intuition soit un peu gênée par des espaces de dimension supérieurs à trois, ces
ensembles interviennent très rapidement lors de l’étude de certains problèmes. En effet, grossière-
ment, ajouter une dimension revient à considérer un paramètre supplémentaire. Par exemple, pour
décrire le mouvement d’un oiseau nous avons besoin de connaître sa position dans l’espace. En
revanche, il est possible que nous ayons également besoin de connaitre la durée de son mouvement,
la pression atmosphérique, la température, etc . . . la considération de ceci force à introduire plus de
dimensions pour prendre en compte ces nouveaux paramètres. En statistiques, certains problèmes
de modélisation comme la météorologie met en jeu plusieurs milliers de paramètres.

L’un des intérêts majeur des coordonnées cartésiennes est que nous pouvons étudier des
choses qui dépasse notre imagination. En effet, pour ajouter une dimension il suffit d’ajouter une
coordonnée à notre vecteur. Il devient donc possible de faire des calculs sur des choses que nous
ne pouvons visualiser. Cela va parfois à l’encontre de notre intuition. Voyons ceci au travers d’un
exemple.

Débutons dans le plan et considérons un carré de côté 2 dont le centre est placé en (0, 0).
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Plaçons des disques de rayon 1 dans les zones suivantes : un premier disque centré au point (1; 1),
un deuxième en (1; −1), un autre en (−1; 1) et un dernier en (−1; −1). Il est alors possible de
placer un dernier disque en (0; 0) puis de l’agrandir jusqu’à ce qu’il touche les quatre disques que
nous avons disposer. dans le carré au préalable.

Bien sûr, il est possible de procéder de manière similaire dans l’espace. Cette fois-ci nous avons
un cube de côté 2, 8 boules de rayon 1 centrées aux points (±1; ±1; ±1) et enfin une dernière boule
placée en (0; 0; 0 dont le rayon est plus grand possible (avec pour condition que cette nouvelle
boule ne puisse empiéter sur les autres).

A vrai dire, pourquoi s’arrêter en si bon chemin ? Il n’est plus possible de faire de dessin mais
nous pouvons imaginer un hypercube de côté 2 (que nous noterions [−2; 2]d) en dimension d et
placer des boules aux points (±1; . . . , ±1) comme auparavant pour enfin placer une dernière boule
au centre avec les mêmes restrictions qu’auparavant.

A partir de quelle dimension cette dernière boule dépasse du cube [−2; 2]d?

De manière intuitive, nous serions tenter de répondre : jamais ! Voyons ce que nous disent les
calculs. Nous avons vu que la distance d’un point M = (x1; x2) à l’origine valait

d(O, M) =
√

x2
1 + x2

2

En dimension d, il s’agit de la même formule. C’est-à-dire, si M a pour coordonnées (x1; x2; . . . , xd)
(il n’est plus vraiment possible de parler d’abscisses ou d’ordonnées, nous numérotons donc les
coordonnées par des nombres x1, . . . , xd) nous avons la formule suivante :

d(O, M) =
√

x2
1 + x2

2 + . . . + x2
d

Or, dans le problème que nous considérons les points M , centres des boules, ont des coordonnées de
la forme (±1; . . . ; ±1 donc d(O, M) =

√
d. Ainsi, puisque ces boules sont de rayon 1, cela entraine

que le plus grand rayon possible pour la boule centrale vaut
√

d − 1. En conséquence, la boule
centrale déborde du cube si

√
d − 1 > 2 ⇐⇒ d > 9

ce qui n’était pas du tout intuitif. En fait, il est même possible de préciser ce résultat. Il s’agit d’un
domaine des mathématiques qui s’appelle la concentration de la mesure. L’un des résultats de cette
théorie permet d’affirmer que le volume de la boule centrale restant dans le cube s’approche très
vite (exponentiellement vite) de zéro lorsque la dimension devient de plus en plus grande.

3.11.1 Distance

La distance que nous venons de voir s’appelle la distance euclidienne. Il existe d’autre façon
de mesurer la distance entre deux points, l’une d’elle s’appelle la distance de « Manhattan » (en
rapport avec le quartier de New-York). La raison derrière cette terminologie est la suivante : la
plupart des villes américaines sont construites sur la forme d’un quadrillage. Ainsi, pour rejoindre
un point A à un point B de la ville, nous sommes forcés de suivre ce quadrillage et d’arpenter les



3.11. CURIOSITÉ EN GRANDE DIMENSION 37

côtés des carrés de ce quadrillage. Ainsi, la distance calculée correspond à celle qui est effectivement
parcouru à pied plutôt que celle obtenue « à vol d’oiseau ».

Formellement, si A(xA; yA) et B(xB ; yB), alors

AB = |xA − xB | + |yA − yB|

où | · | désigne la valeur absolue d’un nombre réel. Cette formulation n’engendre que très peu de
différences notables avec la géométrie classique (grossièrement tout diffère d’une constante multi-
plicative universelle). En revanche, certain objets bien connu sont un peu modifiés. Pour voir cela
nous devons adopter quelques notations : d2(A, B) pour désigner la distance euclidienne (celle vu
en cours) entre deux points et par d1(A, B) pour la distance de Manhattan. Avec ces notations, il
est possible de définir un disque de centre A et de rayon r > 0 comme étant l’ensemble des points
M vérifiant :

d2(A, M) ≤ r

et nous obtiendrons la figure classique que vous avez pu rencontré au collège. En revanche, si
nous remplaçons d2 par d1 dans le formule précédente, notre cercle prendra alors la forme d’un carré !

Il existe d’innombrables distances en mathématiques, chacune ayant une utilité, les quelques
mots précédents ne font qu’effleurer la surface de cette notion.

3.11.2 Pythagore

Durant votre scolarité du collège, le théorème de Pythagore fut, sans doute, l’un des résultats
qui a occupé une grande partie du programme. Il est même fort possible que votre professeur ait
proposé une démonstration permettant de vous assurer que l’énoncé de ce théorème était vrai.
Néanmoins, votre professeur, a sûrement du omettre une chose fondamentale à son propos. Ma
question est donc la suivante :

le théorème de Pythagore est-il tout le temps vrai ?

Cette question peut sembler incongrue, pourtant elle mérite quelques mots. Votre professeur du
collège a du présenter le théorème de Pythagore et dessiner des triangles sur le tableau noir de la
salle de cours. Implicitement, cela signifie que ses dessins sont fait sur une surface plane ! A votre
avis, le théorème de Pythagore est-il encore vrai si nous dessinions nos triangles sur un ballon ? ou
à l’intérieur d’un bol ?

La réponse à ces questions est négative ! D’ailleurs, il est même possible de construire, sur un
un ballon, un triangle possédant 3 angles droits ! En d’autres termes, cette remarque signifie qu’il
existe d’autre géométrie que celle d’Euclide (étudiée au collège, puis au lycée). Grossièrement, il y
a aussi la géométrie sphérique (celle-ci pouvant être visible à l’échelle de la Terre, permettant aux
avions d’effectuer des vols optimaux entre Paris et Tokyo) et la géométrie hyperbolique. Bien sûr, il
existe d’autres géométries que celles que nous venons d’énoncer (bien qu’il s’agisse des principales).
Par exemple, la géométrie qui a permis au physicien Albert Einstein de formaliser sa théorie de la
relativité repose sur une géométrie dite « pseudo-riemannienne ».
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