
Chapitre 3

Suites numériques

3.1 Introduction

Les suites numériques sont des objets mathématiques qui apparurent naturellement au cours
de l’Histoire. Par exemple, en considérant le fait de consigner les résultats d’une expérience (la
hauteur d’une plante, le nombre d’insecte dans une fourmilière,. . . ) : la valeur de u0 correspondrait
alors aux données initiales, la valeur de u1 celles du jour suivant et ainsi de suite.

Cette façon d’indexer des données est présent dans l’Histoire depuis très longtemps. Il est possible
de trouver des traces de ceci chez Archimède (287/212 avant J.C.) ou encore au 1er siècle après
J.C. avec la méthode d’Héron d’Alexandrie (servant à extraire une racine carrée). L’étude des suites
numériques préoccupa, beaucoup plus tard, à nouveau les mathématiciens au 17ème siècle avec la
méthode des indivisibles de Cavalieri permettant de calculer simplement des aires ou des volumes.
Cette branche des mathématiques est présentée dans l’Encyclopédie de Diderot et d’Alembert en
1751 et son étude est poursuivie par d’éminents mathématiciens (Newton, Lagrange, Bernoulli,. . . )
de l’époque. Elle intervient également de nous jours en analyse numérique et apparait dans certains
procédés de modélisation par ordinateurs.

3.2 Définition

Comme nous l’avons mentionné plus tôt, une suite numérique consiste numéroter un ensemble de
valeurs à l’aide des entiers naturels. Par exemple, la liste de réels 0, 1, 1, 2, 3, 5, 8, 13 se numéroterait
de la manière suivante :

u0 = 0, , u1 = 1, u2 = 1, u3 = 2, u4 = 3, u − 5 = 5, u6 = 8, u7 = 13

u0 correspond au premier terme de la suite, u1 au deuxième terme de la suite et ainsi de suite.
Plus formellement, cela revient à considérer une fonction u : N → R.

Définition 3.2.1. Une suite est une fonction u : N → R, c’est à dire

u : N → R

n #→ u(n)
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Pour alléger les notations, nous noterons u(n) par un. Cette valeur est appelée terme de rang n de
la suite.

Remarque. Comme nous allons le voir par la suite, ce type particulier de fonctions est beau-
coup plus simple à étudier puisque nous ne considérons que les valeurs prises par la fonction sur
les entiers plutôt que sur l’ensemble des réels (nous considérons u(n), n ∈ N plutôt que f(x), x ∈ R).

Au niveau des notations : nous désignerons une suite (l’ensemble de ses valeurs) par (un)n∈N.
Naturellement, le terme précédent un est un−1 et le terme suivant un+1.

Voyons à présent de quelle manière il est possible de définir une suite.

3.2.1 Formule explicite

Il y a plusieurs façons de créer une suite, la première consiste à donner une formule explicite,
c’est-à-dire un = f(n), n ∈ N pour une fonction f donnée. Cette façon de faire permet de calculer
facilement la valeur de n’importe quel terme souhaité.

Exemple 3.2.1. 1. Si f : x #→
√

x − 7 nous avons alors un = f(n), n ≥ 7 et les premières
termes de cette suite sont alors u7 = 0, u8 = 1, u9 =

√
2, . . ..

2. Si vn = (−1)n, n ≥ 0 alors v0 = 1, v2011 = −1, . . ..

3. Si wn = 4
n+1 , n ≥ 0 alors w0 = 4, w1 = 2, w2 = 4

3 , . . ..

Remarque. Il n’est pas obligatoire qu’une suite débute au rang n = 0. Comme nous pouvons le
constater avec l’exemple précédent, les termes u0, . . . , u6 n’existe pas car la fonction f n’est pas
définie en ces points.

Représentation graphique

Lorsqu’un suite est définie à l’aide d’une fonction f : [0, +∞[→ R, c’est à dire
un = f(n), n ≥ 0, sa représentation graphique consiste à placer dans un repère orthonor-
mée les points A0(0, u0), A1(1, u1), A2(2, u2), . . ..

Exemple 3.2.2. Placer sur un graphique les quatre premiers termes de la suite un = 6
n+2 , n ≥ 0.

Même question avec la suite (tn)n≥0 définie par tn = n(4 − n), n ∈ N.

Voyons une autre façon de faire.

3.2.2 Formulation par récurrence

Une autre manière de procéder est de définir une suite par récurrence. Cela consiste à calculer
un terme de la suite au fur et à mesure à partir du terme précédent.

Définition 3.2.2. Une suite (un)n≥0 peut être définie à l’aide
• d’une valeur initiale, ici u0 ∈ R
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• d’une relation exprimant un+1 en fonction du terme précédent un.

Exemple 3.2.3. Considérons la suite (un)n≥1 définie par u0 = 5 et un+1 = 3un − 2, n ≥ 1. Nous
pouvons alors calculer un par un les termes de la suite :

u1 = 3 × u0 − 2 = 3 × 5 − 2 = 13 puis u2 = 3 × u1 − 2 = 3 × 13 − 2 = 37 etc

Remarque. 1. L’inconvénient majeur de ceci est la nécessité de devoir calculer tous les termes
précédents celui d’intérêt.

2. En considérent g(x) = 2x − 2 la suite définie ci-dessus peut s’écrire un+1 = g(un), n ≥ 1 et
u0 = 5.

Représentation graphique

La représentation graphique d’une suite définie par récurrence se fait en deux temps. Il faut
tracer le graphe de la fonction f : x #→ x ainsi que celui de la fonction g utilisée pour définir la
suite. Voyons comment faire à l’aide d’un exemple.

Exemple 3.2.4. Soit g la fonction définie sur [−1; +∞[ par g(x) =
√

x + 1 et (Cg) sa courbe
représentative. Considérons la suite (un)n≥0 définie par

{

un+1 = g(un) =
√

un + 1 n ≥ 1,
u0 = −0, 8.

Pour obtenir une réprésentation graphique de cette suite, il faut suivre la méthode décrite ci-
dessous.

1. Tracer (Cg) et la droite d’équation y = x sur [1; 4] dans un repère orthonormé (unité 5 cm)
et u0 sur l’axe des abscisses.

2. Utiliser la courbe (Cg) pour obtenir le terme u1 à partir de u0, puis la droite y = x pour
reporter la valeur obtenue de u1 sur l’axe des abscisses.

3. Recommencer l’étape précédente pour obtenir les termes suivants.

Exercice 2. Représenter graphiquement les premiers termes de la suite (vn)n≥0 définie par

{

vn+1 = 2vn − 1, n ≥ 1
v0 = 2.

3.3 Suites usuelles

Dans cette section nous allons présenter la définition de certaines suites usuelles.
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3.3.1 Suites arithmétiques

Il s’agit probablement d’une des suites les plus simples à étudier : elles se définissent par récur-
rence et l’on passe d’un terme au suivant en ajoutant systématiquement le même nombre réel r.
Formellement voici la définition des suites arithmétiques.

Définition 3.3.1. Une suite arithmétique est définie par le relation de récurrence suivante :

{

un+1 = un + r n ≥ 0,
u0 ∈ R.

Le réel r est appelé la raison de la suite.

Exemple 3.3.1. 1. La suite u0 = 1, u1 = 6, u2 = 11, u3 = 16, . . . est arithmétique de raison 5.

2. La suite définie par :

{

un+1 = un − 3 n ≥ 0,
u0 = 10

est arithmétique de raison −3.

3. La suite des entiers naturels impairs est arithmétique de raison 2.

Remarque. Remarquons le fait suivant : une suite (un)n≥0 est arithmétique si et seulement si la
différence un+1−un est constante (et ne dépend pas de n) pour tout n ∈ N. Dans ce cas, la constante
obtenue est la raison de la suite.

Exemple 3.3.2. 1. Considérons la suite définie par un = 3n − 2 et montrons qu’il s’agit d’une
suite arithmétique de raison 3. Soit n ∈ N, alors

un+1 − un =3(n + 1) − 2 − (3n − 2)

=3n + 3 − 2 − 3n + 2 = 3.

Nous avons donc bien montré que la suite est arithmétique de raison 3.

2. Il est important d’avoir à l’esprit que de nombreuses suites ne sont pas arithmétique. Cela
consiste à observer que la différence entre un+1 et un n’est pas constante et dépend de n. Par
exemple, étudions la suite définie par vn = n2, n ≥ 0. Soit n ∈ N, alors

vn+1 − vn =(n + 1)2 − n2

=2n + 1

Cette suite n’est donc pas arithmétique.

Le résultat suivant montre qu’il est possible d’exprimer une suite arithmétique en fonction de n
plutôt que par une relation de récurrence.
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Proposition 10. Soit (un)n≥0 une suite arithmétique de raison r ∈ R, alors

un = u0 + nr n ≥ 0

Remarque. La réciproque est vraie. Il est parfois utile d’utiliser la formule suivante, pour tout n ∈ N

et tout p ∈ N

un = up + (n − p) × r

Démonstration. La démonstration se fait de proche en proche : en exprimant un en fonction du
terme qui le précède, puis en exprimant un−1 en fonction de un−2. Le résultat s’ensuit en cumulant
ces différentes égalités.

Exemple 3.3.3. Soit (un)n≥0 une suite arithmétique de raison r = −2 et de premier terme u0 = 7.
D’après la proposition précédente, nous avons l’expression suivante

un = 7 − 2n, n ≥ 0.

Notons que cette expression permet de calculer plus facilement la valeur de u50 = 7 − 2 × 50 sans
avoir à calculer les termes précédents u1, . . . , u49 à l’aide de la relation de récurrence.

3.3.2 Suites géométriques

Voici un autre exemple de suite usuelle, cette fois-ci le terme suivant est obtenu en multipliant
systématiquement le terme précédent par le même nombre réel q. Autrement dit :

Définition 3.3.2. On dit qu’une suite (un)n≥0 est géométrique de raison q ∈ R si

un+1 = q × un, n ≥ 0

Exemple 3.3.4. 1. la suite u1 = 2, u2 = 2, u3 = 4, u4 = 8, . . . est géométrique de raison 2.

2. la suite définie par

{

un+1 = − 1
2 un n ≥ 0,

u0 = 3

est arithmétique de raison − 1
2 .

3. La suite définie par un = (−1)n est géométrique de raison −1.

Remarque. Soit (un)n≥0 une suite telle que un ≠ 0 pour tout n ∈ N. La suite (un)n≥0 est géomé-
trique si et seulement si le quotient un+1

un
est constant pour tout entier n. Dans ce cas, la constante

obtenue est la raison q de la suite.

Exemple 3.3.5. Considérons la suite (un)n≥0 définie par un = 5 × 3n+2. Il est évident que un > 0
pour tout n ∈ N et

un+1

un
=

5 × 3n+3

5 × 3n+2
= 3.

Nous avons donc montré que la suite est géométrique de raison 3.
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Similairement au cas des suites arithmétiques, il est possible d’obtenir une expression en fonction
de n d’une suite géométrique. Plus précisément,

Proposition 11. Soit (un)n≥0 une suite géométrique de raison q ∈ R, alors l’expression suivante
est satisfaite

un = u0 × qn, n ≥ 0.

Remarque. La réciproque est vraie. De plus, il peut-être utile d’avoir en tête la formule suivante,
pour tout n ∈ N et tout p ∈ N

un = up × qn−p

Démonstration. Même type de démonstration que pour le suites arithmétiques.

3.3.3 Expression des sommes partielles

Il sera parfois utile d’avoir une formule permettant de calculer la sommes des n premiers termes
d’une suite arithmétique ou géométrique (un)n≥0. Formellement, nous souhaitons une formule pour

n
∑

k=0

uk = u0 + u1 + . . . + un = ?

Remarque. Le symbole
∑

est un moyen d’alléger les notations en écrivant de manière condensée une
somme. L’indice de sommation dans l’exemple précédent est k et celui-ci débute à 0 et se termine
à n, nous fournissant donc la somme de tous les termes uk (qui apparait derrière le symbole

∑

) se
trouvant entre k = 0 et k = n.

Proposition 12. La formule suivante est satisfaite :

n
∑

k=0

k = 0 + 1 + 2 + . . . + n =
n(n + 1)

2

Remarque. Une légende raconte que la démonstration de ce résultat avait été trouvé, de manière
pragmatique, par Gauss à l’âge de 8 ans.

Démonstration. Notons Sn =
∑n

k=0 k et posons l’addition de Sn = 1+ . . .+n avec la même somme
dans laquelle nous avons inversé l’ordre des termes (i.e. Sn = n + (n − 1) + . . . + 2 + 1). Ceci nous
fournit n paquets de (n + 1). Autrement dit,

2Sn = n(n + 1)

d’où le résultat.

En conséquence, cette proposition permet de calculer la somme des (n + 1) termes d’une suite
géométrique.
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Corollaire 13 (Somme de termes d’une suite arithmétique). Soit (un)n≥0 une suite arithmétique
de raison r ∈ R alors

n
∑

k=0

uk = (n + 1)u0 + r ×
n(n + 1)

2

Voici une proposition similaire servant pour les suites géométriques.

Proposition 14 (Somme de termes d’une suite géométrique). Soit q ∈ R.

1. Si q ≠ 1 alors Sn =
∑n

k=0 qk = 1 + q + q2 + . . . qn = 1−qn+1

1−q .

2. Si q = 1 alors Sn = n + 1.

Démonstration. La deuxième assertion est triviale. Démontrons la première. Observons que qSn =
q + q2 + . . . + qn+1. Ainsi, nous en déduisons que

Sn − qSn = 1 + q + q2 + . . . qn − (q + q2 + . . . + qn+1) = 1 − qn+1

Autrement dit, (1 − q)Sn = 1 − qn+1 d’où la conclusion puisque, par hypothèse, 1 − q ≠ 0.

3.4 Bilan du chapitre

Voici les savoirs faire à acquérir dans ce chapitre :

• Savoir calculer et représenter graphiquement les termes d’une suite à partir d’une formule
explicite ou d’une définition pas récurrence.

• Identifier et démontrer qu’une suite est arithmétique ou géométrique (ou ni l’une ni l’autre).

• Savoir utiliser de manière adéquate les différentes formules de représentation d’une suite
arithmétique ou géométrique.

• Maitriser les résultats portant sur les différentes formules de sommes partielles.

3.5 Pour aller plus loin

3.5.1 Nombre d’or, suite de Fibonnaci, pavage de Penrose

Historiquement, il semblerait que le nombre d’or φ = 1+
√

5
2 ait été initialement défini l’unique

rapport a
b

entre deux longueurs a et b telles

a + b

a
=

a

b

Le nombre d’or peut aussi être obtenu comme étant une racine de l’équation
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x2 − x − 1 = 0

La suite de Fibonacci permet de décrire, de manière grossière, la croissance de population de
lapins. Cette suite doit son nom au mathématicien italien Fibonacci (1175 − 1250). La définition
de celle-ci est faite par récurrence et porte exprime le terme un+2 en fonction des deux termes qui
le précèdent (nécessitant ainsi la donnée des deux premiers termes).

{

un+2 = un+1 + un n ≥ 2,
u0 = 1, u1 = 1.

Cette suite est notamment célèbre dans la culture populaire au travers, entre autres, du roman
Da Vinci Code de D. Brown mais aussi par son apparition dans le tableau Parade de cirque, peint
en 1887 − 1888, de G. Seurat. Cette suite entretient également des liens avec le célèbre nombre
d’or φ. En effet, il est possible de montrer que le quotient de deux termes consécutifs de la suite
de Fibonacci se rapproche de plus en plus du nombre d’or à mesure que n se rapproche de l’infini.

Le nombre d’or est également utilisé dans la construction de pavage de Penrose.

Figure 3.1 – Pavage de Penrose

Ces pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose
dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure
des quasi-cristaux (il s’agit de solides dont le spectre de diffraction est essentiellement discret et
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dont l’arrangement des atomes n’est pas périodique). La construction de tels objets mathématiques
s’obtient grâce à des suites définies par récurrence.

3.5.2 Conjecture de Syracuse

Considérons la suite (un)n≥0 définie, par récurrence à partir d’un entier u0 ∈ N, de la manière
suivante

un+1 =

{

un

2 si un est pair
3un + 1 si un est impair

Exemple 3.5.1. Si u0 = 14, nous obtenons la suite des nombres :

14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .

Remarque. La suite de nombre 1, 4, 2, 1, 4, 2, . . . se répète indéfiniment, il usuel de désigner ceci
sous le nom de « cycle trivial ».

La conjecture de Syracuse, ou conjecture d’Ulam, est l’hypothèse mathématique selon laquelle
la suite de Syracuse de n’importe quel entier strictement positif atteint 1. Autrement dit, peut-
importe la valeur de départ, à partir d’un certain rang, la suite atteint le cycle trivial 1, 4 2 1, . . ..

En dépit de la simplicité de son énoncé, cette conjecture défie depuis de nombreuses années (au
moins depuis 1928) les mathématiciens. D’ailleurs, le mathématicien Paul Erd ?s (1931 − 1996) a
dit à propos de la conjecture de Syracuse : « les mathématiques ne sont pas encore prêtes pour de
tels problèmes ».
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