Chapitre 3

Suites numériques

3.1 Introduction

Les suites numériques sont des objets mathématiques qui apparurent naturellement au cours
de I'Histoire. Par exemple, en considérant le fait de consigner les résultats d’une expérience (la
hauteur d’une plante, le nombre d’insecte dans une fourmiliére,. . . ) : la valeur de ug correspondrait
alors aux données initiales, la valeur de u; celles du jour suivant et ainsi de suite.

Cette fagon d’indexer des données est présent dans I'Histoire depuis tres longtemps. Il est possible
de trouver des traces de ceci chez Archimede (287/212 avant J.C.) ou encore au ler siécle apres
J.C. avec la méthode d’Héron d’Alexandrie (servant a extraire une racine carrée). L’étude des suites
numériques préoccupa, beaucoup plus tard, & nouveau les mathématiciens au 17¢me siecle avec la
méthode des indivisibles de Cavalieri permettant de calculer simplement des aires ou des volumes.
Cette branche des mathématiques est présentée dans I'Encyclopédie de Diderot et d’Alembert en
1751 et son étude est poursuivie par d’éminents mathématiciens (Newton, Lagrange, Bernoulli,. . . )
de I’époque. Elle intervient également de nous jours en analyse numérique et apparait dans certains
procédés de modélisation par ordinateurs.

3.2 Définition

Comme nous ’avons mentionné plus t6t, une suite numérique consiste numéroter un ensemble de
valeurs a ’aide des entiers naturels. Par exemple, la liste de réels 0,1, 1, 2, 3, 5, 8, 13 se numéroterait
de la maniére suivante :

ug =0, y,uy =1, uo =1, u3=2, uu =3, u—5=95, ug =8, uy =13

ug correspond au premier terme de la suite, u; au deuxiéme terme de la suite et ainsi de suite.
Plus formellement, cela revient a considérer une fonction v : N — R.

Définition 3.2.1. Une suite est une fonction u : N — R, c’est a dire

v : N — R
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Pour alléger les notations, nous noterons u(n) par u,. Cette valeur est appelée terme de rang n de
la suite.

Remarque. Comme nous allons le voir par la suite, ce type particulier de fonctions est beau-
coup plus simple a étudier puisque nous ne considérons que les valeurs prises par la fonction sur
les entiers plutot que sur 'ensemble des réels (nous considérons u(n), n € N plutdt que f(z), z € R).

Au niveau des notations : nous désignerons une suite (I’ensemble de ses valeurs) par (us,)nen-
Naturellement, le terme précédent u,, est u,_1 et le terme suivant u,1.

Voyons a présent de quelle maniéere il est possible de définir une suite.

3.2.1 Formule explicite

Il y a plusieurs fagons de créer une suite, la premiére consiste a donner une formule explicite,
c’est-a-dire u,, = f(n), n € N pour une fonction f donnée. Cette fagon de faire permet de calculer
facilement la valeur de n’importe quel terme souhaité.

Exemple 3.2.1. 1. Si f :  — /2 — 7 nous avons alors u, = f(n), n > 7 et les premiéres
termes de cette suite sont alors u; = 0, ug = 1, ug = v/2, .. ..

2. Siv, =(—1)", n>0alors vg =1, vao11 = —1,....

3. Siw, = nZOalorst:Zl,wl:Z,wQ:%,....

_4
n+1?
Remarque. 11 n’est pas obligatoire qu'une suite débute au rang n = 0. Comme nous pouvons le
constater avec l’exemple précédent, les termes wuy, ..., ug n'existe pas car la fonction f n’est pas
définie en ces points.

Représentation graphique

Lorsqu'un suite est définie a l'aide d’une fonction f : [0,+o00o[— R, clest a dire
u, = f(n),n > 0, sa représentation graphique consiste & placer dans un repére orthonor-
mée les points Ag(0,ug), A1(1,u1), Aa(2,uz),.. ..

n > 0.

Exemple 3.2.2. Placer sur un graphique les quatre premiers termes de la suite u,, = 1%2, >

Méme question avec la suite (¢y,),>0 définie par t, =n(4 —n), n € N.

Voyons une autre fagon de faire.

3.2.2 Formulation par récurrence

Une autre maniere de procéder est de définir une suite par récurrence. Cela consiste a calculer
un terme de la suite au fur et & mesure a partir du terme précédent.

Définition 3.2.2. Une suite (un)n>0 peut étre définie a laide
o d’une valeur initiale, ici ug € R
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o d’une relation exprimant u,+1 en fonction du terme précédent uy,.

Exemple 3.2.3. Considérons la suite (uy,),>1 définie par ug =5 et up41 = 3u, — 2, n > 1. Nous
pouvons alors calculer un par un les termes de la suite :

U =3 Xug—2=3x5—2=13 puis us=3xu; —2=3x13—-2=37 etc
Remarque. 1. L’inconvénient majeur de ceci est la nécessité de devoir calculer tous les termes

précédents celui d’intérét.

2. En considérent g(x) = 2z — 2 la suite définie ci-dessus peut s’écrire up+1 = g(uy,), n > 1 et
ug = 5.
Représentation graphique

La représentation graphique d’une suite définie par récurrence se fait en deux temps. Il faut
tracer le graphe de la fonction f : x — x ainsi que celui de la fonction g utilisée pour définir la
suite. Voyons comment faire a I’aide d’un exemple.

Exemple 3.2.4. Soit g la fonction définie sur [—1;+oo[ par g(z) = vV +1 et (Cy) sa courbe
représentative. Considérons la suite (uy)n>0 définie par

Unt1 = g(un) = Vun,+1 n>1,
ug = 70,8.

Pour obtenir une réprésentation graphique de cette suite, il faut suivre la méthode décrite ci-
dessous.

1. Tracer (Cy) et la droite d’équation y = x sur [1;4] dans un repére orthonormé (unité 5 cm)
et ug sur 'axe des abscisses.

2. Utiliser la courbe (Cy) pour obtenir le terme u; & partir de ug, puis la droite y = z pour
reporter la valeur obtenue de ul sur ’axe des abscisses.

3. Recommencer I'étape précédente pour obtenir les termes suivants.

Ezercice 2. Représenter graphiquement les premiers termes de la suite (vy)n>0 définie par

Upt1 =20, — 1, n>1
110:2.

3.3 Suites usuelles

Dans cette section nous allons présenter la définition de certaines suites usuelles.
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3.3.1 Suites arithmétiques

Il s’agit probablement d’une des suites les plus simples a étudier : elles se définissent par récur-
rence et 'on passe d’'un terme au suivant en ajoutant systématiquement le méme nombre réel 7.
Formellement voici la définition des suites arithmétiques.

Définition 3.3.1. Une suite arithmétique est définie par le relation de récurrence suivante :

Up+1 = Up + T n >0,
ug € R.

Le réel v est appelé la raison de la suite.

Exemple 3.3.1. 1. La suite up = 1, ug = 6, ug = 11, ug = 16, ... est arithmétique de raison 5.

2. La suite définie par :

Upt1 =Up —3 N >0,
u0:10

est arithmétique de raison —3.

3. La suite des entiers naturels impairs est arithmétique de raison 2.

Remarque. Remarquons le fait suivant : une suite (u,)n>0 est arithmétique si et seulement si la
différence w1 —uy, est constante (et ne dépend pas de n) pour tout n € N. Dans ce cas, la constante
obtenue est la raison de la suite.

Exemple 3.3.2. 1. Considérons la suite définie par u, = 3n — 2 et montrons qu’il s’agit d’une
suite arithmétique de raison 3. Soit n € N, alors

Ups1 — Up =3(n+1)—2— (3n—2)
=3n+3-2-3n+2=3.

Nous avons donc bien montré que la suite est arithmétique de raison 3.
2. 11 est important d’avoir a I'esprit que de nombreuses suites ne sont pas arithmétique. Cela

consiste & observer que la différence entre u,, 1 et u, n’est pas constante et dépend de n. Par
exemple, étudions la suite définie par v,, = n?, n > 0. Soit n € N, alors

Upi1 — Up =(n 4+ 1)% — n?
=2n+1
Cette suite n’est donc pas arithmétique.

Le résultat suivant montre qu’il est possible d’exprimer une suite arithmétique en fonction de n
plutdt que par une relation de récurrence.
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Proposition 10. Soit (uy)n>0 une suite arithmétique de raison r € R, alors

Up =ug+nr n>0

Remarque. La réciproque est vraie. Il est parfois utile d’utiliser la formule suivante, pour tout n € N
et tout pe N

Up =Up+ (N —p) XT

Démonstration. La démonstration se fait de proche en proche : en exprimant wu, en fonction du
terme qui le précede, puis en exprimant u,_1 en fonction de u,_s. Le résultat s’ensuit en cumulant
ces différentes égalités. O

Exemple 3.3.3. Soit (uy,),>0 une suite arithmétique de raison r = —2 et de premier terme ug = 7.
D’apres la proposition précédente, nous avons 1’expression suivante
Up =T7—2n, n>0.

Notons que cette expression permet de calculer plus facilement la valeur de usg = 7 — 2 X 50 sans
avoir & calculer les termes précédents w1, ..., uq9 & I’aide de la relation de récurrence.

3.3.2 Suites géométriques

Voici un autre exemple de suite usuelle, cette fois-ci le terme suivant est obtenu en multipliant
systématiquement le terme précédent par le méme nombre réel ¢q. Autrement dit :

Définition 3.3.2. On dit qu’une suite (up)n>0 est géométrique de raison g € R si

Uni1=q X Up, 1>0

Exemple 3.3.4. 1. la suite u; = 2, ug = 2, uz =4, ug = 8, ... est géométrique de raison 2.

2. la suite définie par

est arithmétique de raison f%.

3. La suite définie par u, = (—1)" est géométrique de raison —1.

Remarque. Soit (uy)n>0 une suite telle que u,, # 0 pour tout n € N. La suite (un)n>0 est géomé-
trique si et seulement si le quotient “Z“ est constant pour tout entier n. Dans ce cas, la constante
obtenue est la raison ¢ de la suite.

Exemple 3.3.5. Considérons la suite (u,)n>0 définie par u, =5 x 3"*2. Il est évident que u,, > 0
pour tout n € N et

Ups1 | 5 x 3
Un, 5 x 3nt2

Nous avons donc montré que la suite est géométrique de raison 3.
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Similairement au cas des suites arithmétiques, il est possible d’obtenir une expression en fonction
de n d’une suite géométrique. Plus précisément,

Proposition 11. Soit (up)n>0 une suite géométrique de raison q € R, alors l’expression suivante
est satisfaite

Uy =ug X ¢, n>0.

Remarque. La réciproque est vraie. De plus, il peut-étre utile d’avoir en téte la formule suivante,
pour tout n € N et tout p € N

Up =up X ¢" 7P

Démonstration. Méme type de démonstration que pour le suites arithmétiques. o

3.3.3 Expression des sommes partielles

Il sera parfois utile d’avoir une formule permettant de calculer la sommes des n premiers termes
d’une suite arithmétique ou géométrique (uy)n>0. Formellement, nous souhaitons une formule pour

n
g U = U+ UL+ .o+ U, = 7
k=0
Remarque. Le symbole ) est un moyen d’alléger les notations en écrivant de maniére condensée une
somme. L’indice de sommation dans l’exemple précédent est k et celui-ci débute a 0 et se termine

a n, nous fournissant donc la somme de tous les termes uy, (qui apparait derriére le symbole >°) se
trouvant entre k =0 et kK =n.

Proposition 12. La formule suivante est satisfaite :

nn+1)

Zk:0+1+2+...+n: 5

k=0
Remarque. Une légende raconte que la démonstration de ce résultat avait été trouvé, de maniere

pragmatique, par Gauss a ’dge de 8 ans.

Démonstration. Notons S,, = ZZ:O k et posons I'addition de S, = 1+4...4+n avec la méme somme
dans laquelle nous avons inversé 'ordre des termes (i.e. S, =n+ (n—1)+...4+ 2+ 1). Ceci nous
fournit n paquets de (n + 1). Autrement dit,

28, =n(n+1)
d’ou le résultat. O

En conséquence, cette proposition permet de calculer la somme des (n + 1) termes d’une suite
géométrique.
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Corollaire 13 (Somme de termes d’une suite arithmétique). Soit (un)n>0 une suite arithmétique
de raison r € R alors

n
n(n+1
Zuk =+ Dug+rx Q
k=0
Voici une proposition similaire servant pour les suites géométriques.

Proposition 14 (Somme de termes d’une suite géométrique). Soit g € R.

n+1

1. Sig#1alors S, =31 _od"=14+q+¢+...¢" = 1?‘_(1

2. Sigq=1 alors S, =n+ 1.

Démonstration. La deuxieéme assertion est triviale. Démontrons la premiere. Observons que ¢S, =
q+¢*+ ...+ ¢""1. Ainsi, nous en déduisons que

Sn—=qSn=1+q+@+..¢" —(q+¢ +...+¢"")=1-¢""
Autrement dit, (1 — ¢)S, =1 — ¢"*! d’olt la conclusion puisque, par hypothése, 1 — q # 0. O

3.4 Bilan du chapitre

Voici les savoirs faire a acquérir dans ce chapitre :

e Savoir calculer et représenter graphiquement les termes d’une suite a partir d’'une formule
explicite ou d’'une définition pas récurrence.

o Identifier et démontrer qu’une suite est arithmétique ou géométrique (ou ni l'une ni autre).

e Savoir utiliser de maniere adéquate les différentes formules de représentation d’une suite
arithmétique ou géométrique.

e Maitriser les résultats portant sur les différentes formules de sommes partielles.

3.5 Pour aller plus loin

3.5.1 Nombre d’or, suite de Fibonnaci, pavage de Penrose

Historiquement, il semblerait que le nombre d’or ¢ = 1+2—‘/5 ait été initialement défini I'unique
rapport 7 entre deux longueurs a et b telles

Le nombre d’or peut aussi étre obtenu comme étant une racine de I’équation
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2?2 —2-1=0

La suite de Fibonacci permet de décrire, de maniere grossiere, la croissance de population de
lapins. Cette suite doit son nom au mathématicien italien Fibonacci (1175 — 1250). La définition
de celle-ci est faite par récurrence et porte exprime le terme u, o en fonction des deux termes qui
le précédent (nécessitant ainsi la donnée des deux premiers termes).

Upt2 = Uppl T Un N2> 2,
ug = 17 Uy = 1.

Cette suite est notamment célebre dans la culture populaire au travers, entre autres, du roman
Da Vinci Code de D. Brown mais aussi par son apparition dans le tableau Parade de cirque, peint
en 1887 — 1888, de G. Seurat. Cette suite entretient également des liens avec le célebre nombre
d’or ¢. En effet, il est possible de montrer que le quotient de deux termes consécutifs de la suite
de Fibonacci se rapproche de plus en plus du nombre d’or & mesure que n se rapproche de l'infini.

Le nombre d’or est également utilisé dans la construction de pavage de Penrose.

FIGURE 3.1 — Pavage de Penrose

Ces pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose
dans les années 1970. En 1984, ils ont été utilisés comme un modele intéressant de la structure
des quasi-cristaux (il s’agit de solides dont le spectre de diffraction est essentiellement discret et
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dont 'arrangement des atomes n’est pas périodique). La construction de tels objets mathématiques
s’obtient grace a des suites définies par récurrence.

3.5.2 Conjecture de Syracuse

Considérons la suite (uy)n>o définie, par récurrence a partir d’un entier ug € N, de la maniere
suivante

- =+ si up estpair
3u, +1 si wu, estimpair

Exemple 3.5.1. Si ug = 14, nous obtenons la suite des nombres :
14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4,2, 1,4, 2, 1,...

Remarque. La suite de nombre 1, 4, 2, 1, 4, 2, ... se répéte indéfiniment, il usuel de désigner ceci
sous le nom de « cycle trivial ».

La conjecture de Syracuse, ou conjecture d’Ulam, est ’hypothése mathématique selon laquelle
la suite de Syracuse de n’importe quel entier strictement positif atteint 1. Autrement dit, peut-
importe la valeur de départ, a partir d’'un certain rang, la suite atteint le cycle trivial 1, 421,....

En dépit de la simplicité de son énoncé, cette conjecture défie depuis de nombreuses années (au
moins depuis 1928) les mathématiciens. D’ailleurs, le mathématicien Paul Erd ?s (1931 — 1996) a
dit & propos de la conjecture de Syracuse : « les mathématiques ne sont pas encore prétes pour de
tels problémes ».
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