Chapitre 3

Suites

3.1 Introduction

Imaginons que nous souhaitons modéliser la situation suivante : supposons que dans un parc,
nous étudions une population de hérissons. En 2018, cette population était composée de 100 in-
dividus et une estimation affirme que le nombre d’hérissons diminue de 10% chaque année. Des
scientifiques estiment que I’espéce sera en danger de disparition lorsque la population du parc sera
inférieur a 40. Ceci méne aux questions suivantes :

1. Comment traduire les données précédentes dans un langage mathématique ?
2. Comment déterminer ensuite en quelle année I’espece sera en danger de disparition ?

3. Pour empécher I'extinction, les scientifiques décident d’introduire 5 hérissons a la fin de chaque
année a partir de 2019. Est-ce que cette mesure va permettre la population d’augmenter ? Quel
leffet cela aura-t-il sur le long terme?

Pour répondre a ce genre de questions, il est nécessaire d’utiliser le vocabulaire des suites :

e ug = 100 désigne la population de hérissons dans le parc au début de I’étude (en 2018).
e D’apres Iénoncé, u; = (1 — %)uo = 0,9ug correspond a la population année suivante (en

2018 + 1 = 2019).
e De maniere générale, si u,, désigne la population de hérissons dans le parc 'année 2018 +
alors
Up4+1 = 0,9u,, pour tout n € N.

Autrement dit, pour passer d'une année a l'autre il suffit de multiplier par ¢ = 0,9. Nous
dirons alors que (uy)n>0 est une suite géométrique de raison g.
e Puisque 0 < ¢ < 1, la suite géométrique (u,)n>0 est décroissante. Cela signifie que la
population diminue d’année en année :
Uy > Uy > Ug >

.. > Uy > Upqq pour tout n e N
e Puisque 0 < ¢ < 1 et ug = 100 > 0, la suite géométrique (un)n>0 tend vers 0 :

lim wu, =0.
n—-+oo
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24 CHAPITRE 3. SUITES

Ainsi, plus nous nous éloignons de I'année 2018, plus la quantité d’hérissons diminue pour
se rapprocher de 0.

Nous allons revoir ce genre de notions dans ce chapitre afin de modéliser et étudier différentes
situations.

3.2 Généralités sur les suites

Pour construire ou définir une suite, deux approches sont envisageables :

1. T'une s’effectue a 'aide d’une fonction ; ce cas de figure ressemble beaucoup a ce qui se produit
lorsqu’on étudie une fonction z — f(x) sauf qu’au lieu d’avoir = € R, la variable est un entier
naturel n € N.

2. lautre repose sur une formule de récurrence qui explique comment déterminer le terme suivant
Up41 & partir du précédent u,, et cela pour tout n € N. Les termes de la suite sont alors obtenus
les uns apres les autres, de proche en proche.

Suite définie explicitement Suite définie par récurrence
Pour tout entier naturel n : ug est donné (ou u, pour p=0) et, pour tout entier
u, = f(n) ouf est une fonction définie sur [0;+c[  natureln:
Exemple : on considére la suite (u,) définie, pour tout u,,1= f(u,) ot f estune fonction
+2 S . A
entier naturel n, par u, = %: f(n). On note % la Exemple : on considére la suite (u, ) définie par uy = 0,24
3u, +2
+2 i =—n_"_
EBUbE e P ixﬂ{ T et, pour tout entier naturel n, u,,4 P f(u,).On
3 note 6, lacourbe de f: x> 3;:42 définie sur |-4; +o9.
Us y
Uyt---

us+

14
() = u3
Uy

P
Fluq) =y
Uy t--- S ug)=u,-

“A

T

0 12 3 4 5 & 0 U, u, 11.211—,1 *

Exercices a traiter : 19 et 20 page 50.

3.2.1 Sens de variation
Comme pour les fonctions, il est important de savoir déterminer le sens de variation d’une suite.

Définition 3.2.1. Soit (up)n>0 une suite numérique, une telle suite sera dite :

e croissante si, pour tout entier n > 0

Un+1 Z Unp.
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e décroissante si, pour tout entier n > 0,

Un+1 S Unp.
e constante si, pour tout entier n > 0,

Up41 = Unp.

Remarque. Vocabulaire : une suite croissante ou décroissante est dite monotone.

En reformulant la définition 3.2.1, nous obtenons des criteres pratiques pour étudier la monotonie
d’une suite. En effet, I’étude de la monotonie d’une suite (up)n>0 consiste & déterminer le signe
de

Unpt1 — Up  pour tout n > 0.

Remarque. Ce taux d’accroissement entre deux termes consécutifs s’apparente a une dérivée dis-
crete.

En effet, observons les faits suivants :

e pour tout n € N, upy; —up, >0 <= Up41 > Un. Autrement dit w, est une suite
croissante.

e pour tout n € N, upy; —up, <0 <~ Upt1 < U,. Autrement dit w, est une suite
décroissante.

De maniere alternative, sous certaines conditions, il est possible d’étudier des quotients. Lorsque
uy, # 0 pour tout n € N, il convient d’étudier si le rapport

Un+1
Un

est supérieur ou inférieur a 1 pour tout n € N. Cela provient de ’observation suivante :

e pour tout n € N, 2222 >1 <= wu,, 1 > u,. Autrement dit u,, est une suite croissante.

Un  —

e pour tout n € N, Y2+l <1 < Upt1 < Up. Autrement dit u,, est une suite décroissante.

Un

Remarque. Notons au passage que ces calculs sont visiblement moins complexe que ceux permettant
de calculer la dérivée f’ d’une fonction dérivable f.

Voyons sur un exemple.
Exemple 3.2.1. Soit (uy)n>0 la suite définie (de maniére explicite) par

~3n+1
 2n+4

pour tout n € N.

Unp

Calculons quelques valeurs pour conjecturer le sens de variation de la suite.

Ix0+1 73><2+1 3x5+1

—0.25 : _2XeTo : _ x0T
0,25 5 we = 5o =081 5w = ooy
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Puisque ug < us < wug, il semblerait que la suite soit croissante. Vérifions cela en déterminant le
signe de w41 — uy, pour tout n € N :

o _3n+1)+1 3n+1 3n+4 3n+l  (Brn+4)2n+4) (Bn+1)(2n+6)
LT T 9+ 1) 44 2044 2046 2n+4 (2n+6)(2n+4)  (2n+4)(2n+6)
10
= > 0.
(2n+6)(2n+4)

En résumé, u,4+1 — u, > 0 pour tout n € N donc la suite est croissante.

Exercice a traiter : 28 page 51.

3.3 Suites arithmétiques et géométriques

Certaines suites apparaissent naturellement pour modéliser certains phénomenes et sont relati-
vement simples a manipuler :

1. lorsqu’on ajoute toujours la méme valeur r pour passer d’un terme au suivant, il s’agit
d’une suite arithmétique;

2. lorsqu’on multiplie toujours par la méme valeur ¢ pour passer d’un terme au suivant, il
s’agit d’une suite géométrique.

Les principales propriétés de ce genre de suite sont résumées dans le tableau ci-dessous.

Suite arithmétique (raison r, 1" terme u;) Suite géométrique (raison g, 1°" terme u,)
Définition Pour tout entier naturel n : Pour tout entier naturel n :
(par récurrence) Uy q=U,+T Uy 1=U, Xq
Expression Pour tout entier naturel n : Pour tout entier naturel n :
explicite Uy, = Uy +nr U, =y X q"
(ot peN, p<n) “n:“p+(”‘P)r U, =u,xq""*
e Si0<g<1etsiuy >0 (resp. uy<0), (u,)
Sens eSir>0, ("n) est strictement croissante. est strictement décroissante (resp.
e variation «Sir<o, (un) est strictement décroissante.  strictement croissante).
e Sir=0, (u,) est constante. e Sig=0o0ug=1,(u,) est constante.

« Si ¢<0, (,) n’est pas monotone.

Remarque. Les suites arithmétiques servent a modéliser des phénomeénes d’évolution linéaires;
graphiquement, le nuage de points (des termes de la suite) a 1’allure d’une droite. Quant a elles,
les suites géométriques modélisent des phénomenes d’évolution exponentielles; graphiquement
le nuage de points (des termes de la suite) ressemble & une courbe exponentielle.
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Suites Graphique Tableau Suites Graphique Tableau

Axes Zoom Initialisation

v
| + —1.2
40 .
| .
30 . 0.8
| .
20 . 0.4f °
| ! .
10 . .
. ® e o o
| = t + t + 0 4 8 12
o} 2 4 6 8 10
n=10 u(n)=46 Déplacer : AV<D Zoomer : 4 ou =

FIGURE 3.1: Représentation graphique d’une suite arithmétique et d’une suite géométrique

Exercices a traiter : 33, 34 et 35 page 51.

Reprenons 'exemple introductif des hérissons.

Exemple 3.3.1. D’apres I’énoncé, la population de hérissons diminue de 10% par an. Ceci méne
a la formule de récurrence :

10
100
Il s’agit donc d’une suite géométrique de raison ¢ = 0,9; sa formulation explicite est donnée par

Upt1 = (1 Ju, pour tout n € N.
un = upg™ =100 x (0,9)" pour tout n € N.

Puisque 0 < ¢ < 1 et ug = 100 > 0 la suite (u,)n>0 est décroissante. A 'aide du tableur de la
calculatrice, nous trouvons que

ug > 40 et wug < 40.
Les hérissons seront donc en danger de disparition en 2018 + 9 = 2027.

Exercices a traiter : 46 page 52 et 59 page 53.

3.4 Limite d’une suite

Dans cette section nous nous interrogeons quant au comportement de u,, lorsque n devient de
plus en plus grand. Autrement dit, nous nous demandons ce qui se produit lorsque

lim w, =7
n—-+oo

Un moment de réflexion suggere que plusieurs cas de figures sont envisageables.
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Exemple 3.4.1. 1. Les termes de la suite semblent s’accumuler pres d’une valeur : u, = % +1
pour n > 1.

Suites Graphique Tableau

Axes Zoom Initialisation
Q

——

10 20 30 40 (ord

n=47 u(n)=1.0213

FIGURE 3.2: Graphique associé & la suite (un)n>0

Il semblerait que lim,,_ 400 up = 1.

2. Les valeurs semblent devenir de plus en plus grande vers +oo : v, = 2"

Uy = —n? pour n > 0.

pour n > 1 ou

Suites Graph-ique Tableau

Axes Zoom Initialisation

6 .
.
4 .
.
.
2 - 2
LJ 2! 4 6 8 10
n=10 u(n)=7.3891

FIGURE 3.3: Graphique associé a la suite v,, = %2"

Il semblerait que lim,,_, 4o v, = +00.

3. Les valeurs semblent devenir de plus en plus grande vers —oo : w, = —n? pour n > 0.

Il semblerait que lim,,— 4 oo Wy, = —00.
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Suites Graph-ique Tableau

Axes Zoom Initialisation

of ~ ¥ . 4 s 8 10

-40 L)

n=10 u(n)=-100

FIGURE 3.4: Graphique associé & la suite w,, = —n?

4. Les points semblent se disperser dans chaque direction : ¢, = (—2)" pour n > 0.

Suites Graph-ique Tableau
1200+
L]
800+
400+
.
——2 + +
0 4 * 8 12
-4004
.
-B00+
Déplacer : AV<D Zoomer : + ou =

FIGURE 3.5: Graphique associé a la suite (¢,)n>0

Il semblerait que la limite lim,+ t,, n’existe pas.
Vocabulaire :
e Lorsque u, se rapproche d’une valeur | € R lorsque n — 400, nous dirons que u,, converge

vers [.
e Lorsque u, se rapproche de +oo lorsque n — +o00, nous dirons que u,, diverge.

En exercice, il sera important (& 1’aide la calculatrice) de conjecturer la valeur de la limite
(lorsqu’elle existe) d’une suite.
Exemple 3.4.2. Reprenons la suite (uy)n>0 définie par

~3n+1
C 2n+4

Quelques calculs permettent facilement de vérifier que

pour tout n € N.

Unp

3 5
Uy = = —

2 2n+4

pour tout n € N.
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5
2n+4

La fonction tableur de la calculatrice montre ensuite que se rapproche de plus en plus de 0

lorsque n — +00. Nous en concluons donc que

lim wu, = —.
n—-+oo n 2

Remarque. 1l est possible de faire de nombreuses opérations avec les limites. Ces nombreuses regles
sont la plupart du temps du bon sens. Par exemple, si

lim w,=1 et lim v, =10 alors lm up,+v,=101+1
n—-+oo n—-+oo n——+oo
ou encore
lim w, =1 et lim v,=1 alors lim wu, xv,=10x10.
n——+oo n—-+oo n—-+oo

Bien entendu, il est possible de faire de méme avec des soustractions ou des quotients. De la méme
maniere, si [ € R, nous avons aussi

l+oo=20c0 ; [xoo=signe(l)oo ; oo X o00==t00.

Mise en garde : dans le deuxiéme point , il est supposé que [ # 0 (cf. forme indéterminée plus
bas). Toutes ces régles sont présentées en détails page 42 du livre.

Voyons sur deux exemples.

Exemple 3.4.3. 1. La suite u,, = ﬁ tend vers 0 lorsque n — +o0 car

lim 3=3 et lim 4n —5 = +oo.

n—+oo n—-+oo
2. La suite v, = 2n + n? tend vers +oo lorsque n — 400 car

lim 2n = 400 et lim n? = +oo.
n—+o0o n—-+oo

Exercices a traiter : 40,41,42 page 51.

Formes indéterminées

Tout ceci se passe pour le mieux concernant les opérations sur les limites. Il faut cependant étre
prudent car il existe quatre exceptions pour lesquelles il n’est pas possible de conclure directement
sans travail supplémentaire : il s’agit des limites de la forme

0 00
- 0 X 2.
J &) ) O )

o0 — 00

qui sont dites alors indéterminées. Ce probléeme est di au fait que certaines suites tendent plus
vite vers 0 ou l'infini que d’autres ; cette notion vitesse fait qu’une limite peut alors I'emporter sur
I’autre. Par exemple,

nd+1
:+Oo

lim
ntoo N+ 1



3.4. LIMITE D’UNE SUITE 31

car l'infini du numérateur est « plus grand » que celui du dénominateur. Au contraire, nous pour-

rions avoir
1
lim \/ﬁi—’— =0
ntoo n2 + 1

car cette fois-ci I'infini du numérateur est « plus petit » que celui du dénominateur.

Exercice a traiter : 58 page 53 et 76,77 page 56.

Théorémes de comparaison

Il n’est pas toujours simple, méme pour la calculatrice, de déterminer le comportement d’une
suite lorsque n — +o00. Cependant, il est parfois possible de comparer une suite compliquée a une
autre plus simple. Dans ce cas, le comportement de I'une a l'infini peut avoir un impact sur le
comportement de 'autre.

RO ICINCEIEDN  On considere trois suites u, v et w et N un entier.

Théoreme de minoration Théoréme de majoration Théoréme des gendarmes
Si, pour tout entier naturel n =N, | Si, pour tout entier naturel n= N, | Si, pour tout entier naturel n=N ,
u, <v, etsi lim u, =+oo,alors u, <v, etsi lim v, =—oo,alors u, <v,<w, etsiles suites u et w
n—y+oo n—y+eo PN R
; : nvergent vers une méme limit
lim = +oe lin a5, === co ege.t ers une méme e
n—>+oo n—>+eo €, alors lim v, =¢

n—y+oo

Voyons sur un exemple.

="

Exemple 3.4.4. Déterminons la limite de la suite u, = ~—;

valeurs : 1 et —1 nous avons

. Puisque (—1)™ ne prend que deux

IN

Uy < pour tout n € N.

S|

1
n
L -0

Or limy, 4o f% =limy, 400 = donc, d’apres le théoreme des gendarmes

lim wu, =0.
n—-+oo

Exercices a traiter : 84,85 page 57.

3.4.1 Limite d’une suite géométrique

Il est beaucoup plus simple de déterminer la limite d’une suite géométrique a partir de sa raison.
Tout repose sur le résultat suivant.
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Proposition 14. Soit ¢ > 0 alors

e 500 <qg<1 alorslim, . q" =0.
e siq>1 alors lim, o q" = +00.

Mettons ceci en oeuvre sur plusieurs exemples.
1. Reprenons la suite modélisant 1’évolution d’une population d’hérissons. La

Exemple 3.4.5.
forme explicite de (up)n>0 est

up =100 x (0,9)" pour tout n € N.

Puisque 100 > 0 et ¢ = 0,9 €]0; 1] alors lim,,_, 1 oo #,, = 0. Autrement dit, au bout d’un certain

temps, la population d’hérissons va s’éteindre.

2. Soit v, = —3 x 2" pour tout n € N. Puisque —3 < 0 et ¢ = 2 > 1 nous avons
lim v, = —oc0.

n—-+oo

Supposons qu’une suite (¢, )n>0 vérifie

0<t,<0,4x%x(0,7)" pourtout n € N.

Puisque (pour les mémes raisons que dans le premier exemple) lim,, o 0,4 X (0,7)" =0, le
théoreme des gendarmes nous assure alors que lim, o t, = 0.

Exercices a traiter : 56, 57, 60 page 53.

Somme partielle d’une suite géométrique
Parfois, nous serons amener a additionner les n premiers termes d’une suite géométrique. 1l est

alors intéressant de connaitre ce qui se produit lorsque n — +00. A ce sujet nous avons le résultat

suivant.

Pour tout nombre réel g # 1 et tout entier naturel n,on a:
Somme des termes de la suite

Somme des termes de la suite
de terme général g" de terme général u, = uy X g"
n n
5,= 2, =1+q+q>++q" S,= Y =ug+...+u,
k= =0
1- n+1 1= n+1
=1 =uy X g
1-¢g 1-¢
| - Uy
1 Sio<g<1, lim S,,:1—
Sio<g<1, lim e At -4
o= —4 Sig>1,siug>0 lim S, =+
Sig>1, lim s,=+e et
Siug <0 lim S, =—eo
n—+oo

n—y+oo
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Exercices a traiter : 61 page 54.

Voyons cela sur un exemple.

Exemple 3.4.6. Imaginons que nous ayons a disposition une suite (u,)n>o telle que u, représente
la quantité d’énergie produite par un panneau photovoltaique durant ’année 2018 4+ n. Supposons
que (u,,)n>0 Soit une suite géométrique de raison ¢ = 0,97 et de premier terme ug = 1900 kW h/m?>
(ce qui correspond & 1’énergie produite en 2018 aprés l'installation).

Nous posons alors la question suivante : en conservant cette installation tres longtemps, est-
il possible que le particulier puisse espérer produire plus de 70 MW h a compter du ler janvier 20187

Pour répondre a cette question, nous constatons que nous devons additionner les quantités
d’énergie produite depuis 2018. C’est-a-dire, nous devons calculer

Sn=ug+u; +...+u, pourtout n € N.

Par exemple, d’aprés ce qui précede, la quantité d’énergie produite durant les 25 premieéres
années correspond a
1 — ¢4t 1-0,97%
T 1900 x —
1—gq 1-0,97

Puisque 0 < g < 1 nous savons également que

Soa = ug X R 33758 kW h.

. 1

En conclusion, ce particulier ne pourra jamais produire plus de 70 MWh a compter du ler janvier
2018.

Exercices a traiter : 65 et 66 page 54; 67 page 54 (facultatif) (dans la question 2a de
l’exercice, on cherche a solution de l’équation x = 1,05x — 10.
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