Nombres rationnels

Questions Flash

- 13 Parmi les nombres rationnels ci-dessous, indiquer ceux qui sont des nombres décimaux.
- -0,33 $\frac{1}{10}$ $-\frac{6}{3}$
- Dans cette liste, quelles écritures désignent le nombre $\frac{1}{4}$?

 • 0,25

 • 0,4

 • $\frac{25}{100}$ • $\frac{5}{20}$

- 15 L'un de ces nombres n'est pas un nombre décimal. Lequel?

- (1) $\frac{17}{20}$ (2) $\frac{3}{4}$ (3) $\frac{4}{3}$ (4) $\frac{32}{100}$
- Sofian affirme: «Tous les nombres rationnels sont des nombres décimaux. » A-t-il raison ?
- Louane affirme: « $\frac{1}{3}$ s'écrit 0,333..., donc j'en conclus que l'écriture de 0,777... sous forme de fraction est $\frac{1}{7}$.»

A-t-elle raison?

- 18 Dans cette liste, quelle écriture ne désigne pas le même nombre rationnel que les autres?

- $\frac{5}{9}$ $\frac{30}{36}$ $\frac{1}{3} + \frac{2}{9}$ $\frac{-10}{-18}$
- 19 Dans chaque cas, donner deux autres écritures fractionnaires du nombre rationnel.
- a) $\frac{5}{6}$
- **b**) $\frac{30}{54}$
- 20 a) Donner le développement décimal de chacun de ces nombres rationnels.

- $\frac{1}{2}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{7}{5}$ $\frac{36}{12}$ $\frac{143}{110}$
- b) Justifier que ces nombres sont des nombres décimaux.
- 21 a) Donner le développement décimal du nombre rationnel $\frac{k}{5}$ pour k prenant les valeurs 1, 2, 3
- b) Justifier que ces nombres sont des nombres décimaux.

- Lesquels de ces nombres sont décimaux ?

- 0,526 $\frac{1}{2}$ $-\frac{7}{3}$ $-\frac{4}{5}$

- $\frac{16}{2}$ $\frac{0.8}{0.6}$ 2×10^{-3} $\sqrt{\frac{49}{25}}$
- 23 Lesquels de ces nombres sont décimaux?
- $\frac{16}{240}$ $\frac{54}{31}$ $\frac{156250}{1128}$

- 24 Lesquels de ces nombres sont des rationnels non décimaux?

- Pour les exercices 25 à 28, déterminer la nature de chaque nombre.
- **25** $\frac{81}{4}$ $\frac{4}{81}$ $\frac{15}{5}$ $\frac{7}{40}$
- **26** $\frac{4+5}{2+5}$ 10^{-5} 1,78 $-\frac{1}{3}$
- $\frac{31}{3200} \cdot \frac{13}{11} \cdot \frac{-14}{3} \cdot \frac{-42}{6}$

- **28** 3,65
 - 3,6565... 0,345243 0,34545...
- Voici deux listes de nombres.
- **Liste 1:** $-\frac{1}{5}$; $\frac{1001}{56}$; $\frac{178000}{9999}$; $\frac{1}{6}$; $-\frac{577}{50}$
- Liste 2:0,1666...;17,875;0,08;-0,2;17,8142142... Indiquer les nombres de la liste 1 qui sont égaux à un nombre de la liste 2 et préciser pour chacun d'eux leur nature.
- 30 Adama affirme : « D'après cet écran de calculatrice, le nombre $\frac{101}{43}$ est décimal car sa partie décimale a un nombre fini de chiffres. »

101÷43

2.348837209

Sa camarade Marine lui propose de soustraire la partie entière 2 et obtient ce nouvel écran :

101÷43-2

0.3488372093

Que dire de l'affirmation d'Adama?

Nombres réels

→ Cours 2

Questions Flash

31 Pour chacun de ces nombres réels, indiquer s'il est rationnel ou irrationnel.

•
$$2\sqrt{2}$$
 • $\frac{\sqrt{2}}{\sqrt{8}}$ • $-\frac{15}{7}$ • $\frac{3\pi}{4}$

•
$$\frac{\sqrt{2}}{\sqrt{8}}$$

•
$$-\frac{15}{7}$$

$$\frac{3\pi}{4}$$

32 Lina affirme: « Le nombre $\frac{\pi}{100}$ est rationnel puisque $100 = 10^2$. » A-t-elle raison?

33 Emmanuel affirme: « 3,243 est un nombre décimal mais pas un nombre réel. » A-t-il raison?

34 Voici un écran de calculatrice :

3.141592654

Pour chaque question, indiquer la réponse exacte.

- a) Les décimaux permettant un encadrement d'amplitude 10^{-2} de π sont :
- (1) 3,14 et 3,15 (2) 3,141 et 3,142 (3) 3,1 et 3,2
- **b)** L'arrondi au centième de π est :
- (1) 3,14
- (2) 3,15
- (3) 3,1
- c) L'arrondi au millionième de π est :
- (1) 3,141 592
- (2) 3,141 592 7
- (3) 3,141 593

35 Sur une droite graduée (unité : 2 cm), représenter le plus précisément possible les nombres entiers en rouge, les nombres rationnels non entiers en vert et les nombres irrationnels en bleu.

$$-\frac{24}{7}$$

•
$$-\pi$$
 • -1,67 • $\frac{24}{6}$ • 10^{-1} • $\frac{11}{6}$

Recopier et compléter les pointillés par le symbole \in ou $\not\in$ qui convient.

•
$$\frac{1}{\pi}$$
... \mathbb{R}

• -15,4...
$$\mathbb{Q}$$
 • $\frac{1}{\pi}$... \mathbb{R} • $-\sqrt{4}$... \mathbb{Z}

•
$$\frac{9}{11}$$
... \mathbb{D} • $\frac{12}{6}$... \mathbb{N} • $\frac{\pi}{2}$... \mathbb{Q}

37 Rachel affirme : « $\pi = \frac{1980127}{630294}$ »

3.141592654 1980127÷630294 3.141592654

A-t-elle raison?

Pour les exercices 38 à 40, indiquer la nature de chaque nombre.

38 •
$$\sqrt{2}$$
 • $-\frac{5}{4}$ • 5×10^4 • $\frac{8}{7}$ • $\frac{\pi}{4}$

$$\frac{8}{7}$$

39 • 1,414 •
$$\frac{7}{6}$$
 • $\sqrt{5} + 4$ • $\frac{5\pi}{8\pi}$ • $\sqrt{0.81}$

•
$$\sqrt{5} + 4$$

$$\frac{3\pi}{8\pi}$$
 • $\sqrt{0.81}$

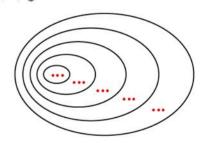
40 •
$$(\sqrt{3}-1)(\sqrt{3}+1)$$
 • $3-\sqrt{5}$ • $\sqrt{54,76}$

41 Dans chaque cas, expliquer pourquoi le nombre n'est pas irrationnel. Préciser alors sa nature.

a)
$$(3-\sqrt{2})(3+\sqrt{2})$$
 b) $\left(\frac{\sqrt{2}}{2}\right)^2$

b)
$$\left(\frac{\sqrt{2}}{2}\right)^2$$

42 1. a) Recopier et compléter ce schéma par les lettres \mathbb{D} , \mathbb{N} , \mathbb{O} , \mathbb{R} et \mathbb{Z} .



b) Colorer la partie qui représente les nombres irrationnels en rouge et celle des nombres rationnels non décimaux en vert.

2. Sur ce schéma, placer les nombres :

$$\bullet 0 \quad \bullet -5 \quad \bullet \frac{8}{4} \quad \bullet \frac{7}{3} \quad \bullet -\sqrt{2}$$

43 a) Recopier et compléter ce tableau dans lequel une croix indique que le nombre appartient à l'ensemble correspondant.

	N	\mathbb{Z}	D	Q	\mathbb{R}
$-\frac{5}{2}$			X	X	X
$-\frac{6}{2}$					
-√121					
√7					
2π				0	
$4,5 \times 10^{-4}$				9	
$-\frac{7}{9}$					
617 8					

b) En déduire la nature de chaque nombre.

Acquérir des automatismes

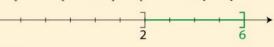
- 44 🏢 Pour chaque nombre, donner, à l'aide de la calculatrice, un encadrement décimal d'amplitude 10⁻³ puis donner l'arrondi au millième.
- a) √7
- **b**) $-\frac{7}{2}$
- 45 🏢 Pour chaque nombre, donner, à l'aide de la calculatrice, un encadrement décimal d'amplitude 10⁻² puis donner l'arrondi au centième.
- **a)** $4-\sqrt{2}$ **b)** $3\sqrt{15}+5\times\frac{\pi-1}{6}$ **c)** $\sqrt{\pi-3}$
- 46 Histoire Vers 250 avant J.-C., le mathématicien grec Archimède démontre que $\frac{223}{71} < \pi < \frac{22}{7}$.
- a) Est-ce un encadrement décimal?
- b) Déterminer l'amplitude de cet encadrement. Arrondir au millième.
- 47 Histoire a) En Inde, vers 380 av. J.-C., $3 + \frac{177}{1250}$ est utilisé comme valeur approchée de π . Recopier et compléter :
- « Cette valeur est l'arrondi de π à 10^{-...}. »
- **b)** En Chine, au 5^e siècle, $\frac{355}{113}$ est utilisé comme valeur
- Recopier et compléter: « Cette valeur permet de connaître l'arrondi de π jusqu'à 10^{-...}. »
- 48 Pour chaque nombre, donner l'arrondi à la précision demandée avec la calculatrice.
- **a)** $\sqrt{3} 3$ au dixième **b)** $\sqrt{\pi}$ au centième

- c) 3π au millième d) $4\sqrt{2}$ au centième
- 49 ABC est un triangle équilatéral de côté 2 cm.
- a) Calculer la valeur exacte de sa hauteur AH, en cm, puis déterminer la nature de ce nombre.
- b) Donner son arrondi au dixième.
- **50** \mathscr{C} est un cercle de rayon 3 cm.
- a) Exprimer sa longueur, en cm, en fonction de π , puis déterminer la nature de ce nombre.
- b) Donner son arrondi au centième.
- 51 Sur cette figure, ABC est un triangle. D, E, F, G sont des points des côtés [AC] et [BC] tels que les droites (AB), (ED) et (FG) sont parallèles. A-
- a) Calculer les valeurs exactes des distances ED et FG, en cm, puis déterminer la nature de chaque nombre.
- b) Donner l'arrondi au dix-millième de ED.

Intervalles

Questions Flash

- 52 Leguel de ces intervalles est représenté cidessous?
- (1) $]2; +\infty[$ (2)]2;6[
- (3) 2;6



- 53 Dans chaque cas, indiquer l'intervalle auquel correspond chaque inégalité.
- a) x > 4:
- (1) $[4; +\infty[$ (2) $]-\infty; 4[$ (3) $]4; +\infty[$
- **b)** $-1 \le x \le 2$:
- **(1)**]-1;2] **(2)** [-1;2] **(3)**]-1;2[

- c) $x \le -7$:
- (1) $]-\infty$; -7] (2) $[-7;+\infty[$ (3) $]-\infty$; -7[
- **d**) $-8 < x \le 3$:

- (1)]-8;3] (2) [-8;3] (3) [-8;3]
- 154 Indiquer si l'affirmation est vraie ou fausse.
- **a)** $-3 \in]-\infty;0]$ **b)** $\frac{1}{3} \in]1;+\infty[$
- c) $-4 \in]-\infty;-4]$ d) $2 \in [2;8]$

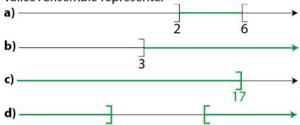
Pour les exercices 55 et 56, traduire chaque information donnée par l'appartenance de x à un intervalle ou une réunion d'intervalles et représenter cet ensemble sur une droite graduée.

- **55** a) $3 \le x \le 7$
- **b)** x < 5
- c) $1 < x \le 8$
- d) $x \le 2$ ou $x \ge 3$
- **56** a) $-1 \le x < 6$ b) x > 0.4 c) 3.9 < d) 7.1 < x < 11.2 e) $x \le -\frac{2}{7}$ f) $x \ge 5$

Pour les exercices 57 à 59, représenter chaque information sur une droite graduée et la traduire par des inégalités.

- **57** a) $x \in [-2; 6]$ b) $x \in [-\infty; 3]$
- c) $x \in [4; 12]$
- **58 a)** $x \in [-1; +\infty[$ **b)** $x \in]-5; 8[$ **c)** $x \in]4; 10,5[$ **d)** $x \in]-\infty; -2[$
- c) $x \in]4;10,5]$
- **59** a) $x \in]-\infty; 0] \cup]2; +\infty[$ b) $x \in \mathbb{R} \{5\}$
- c) $]-\infty;-4[\ \cup\]7;+\infty[$ d) $x\in\mathbb{R}^*-\{-2\}$

60 Dans chaque cas, désigner avec un ou des intervalles l'ensemble représenté.



- **61** Recopier et compléter par \in ou \notin .
- **a)** $-2.5 \dots [-3;5]$ **b)** $\frac{\pi}{2} \dots [-3;3[$
- c) $-7 \dots]-6; -3[$ d) $1 \dots [1;6]$ e) $0 \dots]0; +\infty[$ f) $10^{-1} \dots]-\infty;0]$

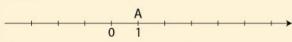
- **q)** 1,3 ... $[-5;0] \cup [2;+\infty[$ **h)** -4 ... $[-3;+\infty[$
- 62 Dans chaque cas, écrire à l'aide d'un ou des intervalles l'ensemble des nombres réels :
- a) supérieurs ou égaux à 8;
- b) positifs ou nuls;
- c) strictement inférieurs à -4;
- **d)** strictement comprise ntre $-\pi$ et 2π ;
- e) strictement inférieurs à 5 ou strictement supérieurs à 10.

Distance entre deux nombres réels

Cours 3. B et C

Questions Flash

- 63 M est un point d'une droite graduée d'origine O. Déterminer mentalement la distance OM lorsque M a pour abscisse:
- a) 12
- **b**) -2
- c) $1 \sqrt{3}$
- 64 A est le point d'abscisse 1 d'une droite graduée.



Déterminer mentalement les abscisses possibles du point M lorsque:

- a) AM = 2
- **b)** AM ≤ 3
- c) AM ≥ 1
- 65 Dans chaque cas, déterminer mentalement la distance entre les deux nombres réels donnés.
- **a)** 6 et 8,3 **b)** -0.25 et 0.25 **c)** -1 et -3.7
- **66** Maya affirme: « La distance entre $\sqrt{2}$ et -1est égale à $\sqrt{2} - 1$. » A-t-elle raison ?

- 67 Dans chaque cas, calculer la distance entre les nombres réels.
- a) -5 et 10
- **b)** $-2\sqrt{2}$ et $-\sqrt{12}$ **c)** $-\pi$ et 4π
- 68 x désigne un nombre réel. Dans chaque cas, interpréter en terme de distance entre nombres réels.
- a) |x-3|

- **b)** |x+6| **c)** |7-x| **d)** |-9+x|
- 69 Sur une droite graduée, A, B, C et D sont les points d'abscisses respectives -14, $-\frac{1}{2}$, 7 et $\frac{1}{2}$.

Calculer les distances AB, BD, BC et CD.

- 70 Dans chaque cas, écrire sans la notation valeur absolue.
- a) $2+\pi$
- **b)** $|1-\sqrt{3}|$ **c)** $|\pi-4|$
- 71 Dans chaque cas, représenter sur une droite graduée les points M d'abscisse x vérifiant l'inégalité.
- a) $|x| \ge 3$
- **b)** |x-1| < 0.5
- c) $|x+4| \le 2$ d) $|x-2| \ge 1$

Pour les exercices 22 à 24, représenter sur une droite graduée l'ensemble auguel appartient le nombre réel x puis écrire cet ensemble à l'aide d'intervalles si possible.

- **72** a) |x-3| = 4.5 c) |x+1| < 3

- **d**) $|x-6| \ge 2$
- **73** a) $|x+2| \le 2.5$ b) |x-3| = 9
- c) |x-4,2| < 1,2
- d) $|x \sqrt{2}| > \sqrt{2}$
- **74** a) $|x| \le 1$
- **b)** |x| = 5
- c) $\left| x + \frac{2}{5} \right| \ge \frac{3}{4}$
- **d)** $|x \pi| \le 3\pi$
- 75 Recopier et compléter.
- a) $x \in]-2$; 4[signifie que |x-...| <
- **b)** $x \in [\dots; \dots]$ signifie que $|x-2| \le 4$.
- c) $x \in [-5; 1]$ signifie que $|x...| \leq$
- **d)** $x \in]...; ...[$ signifie que |x + 3| < 6.
- e) $x \in]-\infty$; 0,5[\cup]2; $+\infty$ [signifie que |x...| >
- **f)** $x \in]-\infty;3] \cup [...;+\infty[$ signifie que $|x...| \ge 2$.
- **76** x désigne un nombre réel.

Dans chaque cas, utiliser la notation valeur absolue pour traduire l'appartenance de x à l'ensemble.

- **a)** $x \in [-1, 7]$ **b)** $x \in]-\infty, -3] \cup [1, +\infty[$
- c) $x \in]-10;11[$ d) $x \in]-\infty;-10[$ $\cup [-3;+\infty[$