
Chapitre 11

Convexité

11.1 Introduction

La notion de dérivées nous a permis de comprendre à quel moment une fonction était croissante ou décroissante.
Elle nous a aussi permis d’identifier les extremums (lorsqu’ils existent) d’une fonction donnée. Il semblerait pourtant
que certains aspects des fonctions, visibles sur leurs représentations graphiques ne soit pas encore observables à
l’aide des outils dont nous disposons.

Exemple 11.1.1. 1. Comment comparer les fonctions suivantes ?

x

y

O

y =
√

x

x

y

O

y = ex

2. Qu’observez-vous sur la courbe de la fonction x "→ x3 ? Comparer avec la parabole d’équation x "→ x2.

x

y

O

y = x3

x

y

O

y = x2

Pour distinguer la différence entres ces courbes ci-dessus, il est nécessaire d’introduire les notions de convexité
et de concavité.

11.2 Fonctions convexes et concaves

Ces notions sont assez générales et ne supposent pas que la fonction vérifie des propriétés de régularités
(continuité ou dérivabilité par exemple).

Définition 11.2.1. Soit f une fonction définie sur un intervalle I et Cf sa courbe représentative. Considérons
A, B ∈ Cf deux points quelconques de la courbe.

1. f est convexe sur I si pour tous points A et B de Cf , la courbe Cf est située en dessous du segment [AB]
(aussi appelée corde). 1

1. Ceci s’exprime aussi sous la forme : f est convexe sur I si pour tout a, b ∈ I et pour tout t ∈ [0, 1] nous avons

f
(

ta + (1 − t)b
)

≤ tf(a) + (1 − t)f(b). (11.2.1)
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2. f est concave sur I si pour tous points A et B de Cf , la courbe Cf est située au dessus du segment [AB].

Graphiquement :

(a) Fonction convexe (b) Fonction concave

Remarque. La propriété de convexité (ou concavité) est une propriété très contraignante et est très utile lorsqu’il
faut résoudre des problèmes complexes d’optimisation. C’est pourquoi la plupart des fonctions ne sont ni convexe,
ni concave.

Exercices à traiter : 9-10 page 145 (Méthode 5 page145). Entrainements : 65 à 68 page155.

11.3 Convexité et tangentes

Dans ce qui suit nous supposerons que la fonction f est dérivable sur I, ceci nous assure que Cf admet une
tangente en chaque point a ∈ I. Cela nous permet de proposer une autre formulation de la convexité.

Proposition 70 (Convexité/concavité et dérivabilité). Soit f une fonction définie et dérivable sur un intervalle I
et Cf sa courbe représentative.

1. f est convexe sur I si et seulement si Cf est située au dessus de chacune de ses tangentes.

2. f est concave sur I si et seulement si Cf est située en dessous de chacune de ses tangentes.
Graphiquement :

(a) Fonction convexe (b) Fonction concave

Remarque. La propriété de convexité peut s’énoncer comme suit : si f est convexe et dérivable sur I alors, pour
tout x, y ∈ I nous avons

f(x) ≥ f(y) + f ′(y)(x − y). (11.3.1)

L’inégalité analogue pour les fonctions concaves consiste à changer le sens de l’inégalité dans (11.3.1). Nous
verrons à la fin du chapitre de quelle manière cette inégalité peut s’utiliser.
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De nombreuses fonctions usuelles vérifient des propriétés de convexité (ou concavité) cela permet de forger
son intuition à propos de cette nouvelle notion et d’avoir des images représentatives en tête.

Exemple 11.3.1. 1. Débutons par deux fonctions convexes : la fonction carré et la fonction exponentielle

2. Voici un exemple de fonction concave : la fonction racine carrée

Remarque. Il n’est pas difficile de montrer que x "→ e−x est une fonction convexe et que la fonction x "→ ln x est
une fonction concave. La fonction x "→ |x| est également une fonction convexe. Les fonctions affines sont à la fois
convexes et concaves.

Il est instructif de regarder de quelle manière les coefficients directeurs des tangentes évoluent en fonction de
la convexité ou concavité de la fonction. Dans le premier cas, nous constatons qu’ils augmentent alors que, dans
le second, ils diminuent. Ceci donne le théorème suivant.

Théorème 71 (Convexité et monotonie de la dérivée). Soit f : I → R une fonction dérivable. Les assertions
suivantes sont alors vérifiées :

• f est convexe convexe sur l’intervalle I si et seulement si f ′ est croissante sur I.
• f est concave sur l’intervalle I si et seulement si f ′ est décroissante sur I.

Voyons cela sur un exemple.

Exemple 11.3.2. La fonction f : x "→ x2 est bien convexe puisque sa dérivée f ′(x) = 2x est croissante (le
coefficient directeur a = 2 > 0).

Exercices à traiter : 13,14 page 147. Exercices d’entrainements : 72 à 75 page 156 (Méthode 7 et 8 p.145).

Comme le lecteur l’aura constater, il arrive que la courbe d’une fonction change de convexité. L’endroit précis
où ce phénomène se produit porte un nom.
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Définition 11.3.1. Soit f une fonction définie et dérivable sur un intervalle I et Cf sa courbe représentative. Un
point A ∈ Cf est un point d’inflexion lorsque, en ce point, la courbe Cf traverse sa tangente.

Graphiquement :

Remarque. Lorsque la courbe admet un point d’inflexion, la fonction change de convexité en ce point. Il est à
noter que ceci se traduit par le fait que f ′ change de monotonie (de croissante, elle devient décroissante ou le
contraire) en ce point.

Voyons cela sur un exemple.

Exemple 11.3.3. Ci-dessous, nous produisons la courbe représentative de la fonction x "→ x3.

Exercices à traiter : 17,18 page 149 (Méthode 9 page 145). Exercices d’entrainements : 81 et 82 page 157.

Pour poursuivre notre étude, il convient d’introduire un nouveau concept.

11.4 Dérivée seconde

Lorsque la fonction f est suffisamment régulière, il est possible de déterminer f ′ la dérivée puis, avec les mêmes
règles de calculs, de déterminer (f ′)′ sa dérivée seconde.

Définition 11.4.1. Soit f : I → R une fonction dérivable sur un intervalle I. Si f ′ est également dérivable sur
I, sa dérivée sera notée f ′′ 2. Il s’agit de la dérivée seconde de f .

2. Cette fois-ci, les physiciens noteraient cela d2f
dx2 pour spécifier que la fonction a été dérivé deux fois par rapport à x
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Remarque. Si f correspond à la position, f ′ à la vitesse, alors f ′′ correspond à l’accélération. Comme nous le
verrons plus tard, l’étude de la dérivée seconde permet d’obtenir des informations globales sur la nature d’un
extremum local 3 et tout ceci aura des liens avec la notion de convexité ou de concavité de la courbe Cf .

Comme nous allons le voir, le calcul d’une dérivée seconde ne comporte aucune difficulté conceptuelle.

Exemple 11.4.1. Si f(x) = x3 − 2x2 − 1 alors

f ′(x) = 3x2 − 4x et f ′′(x) = 6x − 4.

Comme nous allons le voir, les propriétés de f ′′ permettent d’obtenir des résultats précieux sur f .

11.4.1 Convexité et dérivée seconde

La définition n’étant pas très pratique, il est important d’avoir des critères simples d’emploi permettant de
vérifier qu’une fonction est convexe (ou concave). Voici un premier résultat dans ce sens à partir des propriétés de
f ′′.

Théorème 72 (Convexité et dérivée seconde). Soit f : I → R une fonction deux fois dérivable. Les assertions
suivantes sont alors vérifiées :

• f est convexe sur l’intervalle I si et seulement si f ′′ est positive sur I.
• f est concave sur l’intervalle I si et seulement si f ′′ est négative sur I.

Remarque. 1. Ce théorème est simple d’emploi puisqu’il suffit de calculer f ′′ et d’étudier son signe pour
l’appliquer. Il faut cependant s’assurer que la fonction est dérivable 2 fois, ce qui n’est pas toujours le cas
(par exemple, cela n’est pas le cas de la fonction convexe x "→ |x|).

2. Il est remarquable que nous ayons réussi à obtenir une condition analytique (la dérivée seconde est positive
ou négative) afin d’obtenir une propriété géométrique (la convexité ou la concavité).

3. Grossièrement, l’étude de la convexité d’une fonction permet de qualifier son « rythme de croissance » (ou
de décroissance). Par exemple, en cas de croissance, une fonction convexe croît « de plus en plus »(comme
la fonction exponentielle) alors qu’une fonction concave croît de « moins en moins »(comme la fonction
logarithme ou racine carré).

Voyons un exemple d’application.

Exemple 11.4.2. 1. La fonction f : x "→ x2 est convexe puisque f ′′(x) = 2 > 0 pour tout x ∈ R.

2. La fonction g : x "→ 1
x est concave sur R∗

− puisque g′′(x) < 0 pour tout x > 0.

Exercices à traiter : 76 et 77 page 157 (cf. méthode 8 page 147). Entrainements : 79 et 80 page 157.

Le théorème précédent nous permet de retrouver des informations sur la monotonie de la dérivée d’une fonction
convexe. En effet, si f ′′(x) ≥ 0 sur I alors f ′ est une fonction croissante sur I et le théorème 71 nous assure que
f est convexe. Notons tout de même que le théorème 71 reste valable même si la fonction n’est pas deux fois
dérivable.

Exemple 11.4.3. La fonction f : x "→ x2 est bien convexe puisque sa dérivée f ′′(x) = 2 > 0.

Exercices à traiter : 13,14 page 147 et 72 à 75 page 156 (Méthode 7 et 8 p.145).

Convexité et extremum (pour aller plus loin)

En classe de première vous avez constaté le fait suivant : si f est une fonction dérivable sur R et x0 ∈ R un
point tel que

• f ′(x0) = 0 (i.e. x0 est un point critique de f)

3. En y repensant, l’énoncé de la deuxième assertion du théorème 3 ne parait pas très élégant. La notion que nous allons introduire
dans la section suivante nous permettra d’y remédier.
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• f ′(x) change de signe au voisinage de 0

nous savions qu’il s’agissait d’un extremum et c’est le tableau de variation qui nous permettait de savoir
s’il s’agissait d’un maximum ou d’un minimum local. Grâce à la dérivée seconde, nous pouvons obtenir cette
information sans le tableau de variation :

• si f ′′(x0) > 0 alors f(x0) est un minimum local.
• si f ′′(x0) < 0 alors f(x0) est un maximum local.

Voyons cela sur un exemple.

Exemple 11.4.4. Soit f(x =)x3 − 3x2 − 24x + 12 alors f ′(x) = 3x2 − 6x − 24. La dérivée s’annule et change
de signe en x1 = 4 et x2 = −2. De plus, f ′′(x) = 6x − 6. D’où, f ′′(x1) = 18 > 0 donc la fonction atteint un
minimum en x1 ; f ′′(x2) = −18 < 0 donc f admet un maximum local en x2.

Bilan :

En pratique, les sections précédentes nous fournissent plusieurs manière permettant d’établir qu’une fonction
possède un point d’inflexion. Cela peut s’effectuer : graphiquement, via la monotonie de la fonction dérivée f ′

et enfin via le signe de la dérivée seconde f ′′. En résumé, voici ce qui pourrait se produire si f admet un point
d’inflexion en a

Exercices à traiter :

11.5 Inégalités et convexité.

L’utilisation de la convexité est un moyen très commode pour établir des inégalités. Il suffit de montrer que la
fonction (dérivable) est convexe pour ensuite utiliser l’inégalité (11.3.1) :

f(x) ≥ f(y) + f ′(y)(x − y).

Voyons cela sur deux exemples.

Exemple 11.5.1 (Inégalité de Bernoulli). Nous allons démontrer l’inégalité de Bernoulli (3.0.1) à partir de la
convexité de la fonction x "→ (1 + x)n lorsque n ≥ 1. A cet effet, posons φ(x) = (1 + x)n avec x > −1 et n ∈ N∗.
Nous avons alors

φ′(x) = n(1 + x)n−1 et φ′′(x) = n(n − 1)(1 + x)n−2.

Nous constatons ainsi que φ′(x) ≥ 0 puisque 1 + x > 0 et que la fonction x "→ xn−2 est croissante. La fonction
φ est donc convexe, nous avons donc

φ(x) ≥ φ(y) + φ′(y)(x − y) pour tout x, y > −1.

En particulier, si y = 0, nous avons

φ(x) ≥ φ(0) + φ′(0)x ⇐⇒ (1 + x)n ≥ 1 + nx

ce qui correspond à l’inégalité de Bernoulli.
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Remarque. La démonstration ci-dessus nous montre que f(x) = xp est convexe si et seulement si x ≥ 0 et p ≥ 1.
La définition de la convexité (cf. (11.2.1)) nous assure alors (en choisissant t = 1

2 ) que

f

(

x

2
+

y

2

)

≤ 1

2
f(x) +

1

2
f(y) ⇐⇒ 1

2p
(x + y)p ≤ 1

2
xp +

1

2
yp pour tout x, y ≥ 0.

Ceci entraine alors l’inégalité suivante :

(x + y)p ≤ 2p−1(xp + yp). (11.5.1)

Voici une deuxième inégalité.

Exemple 11.5.2 (Minoration de l’exponentielle). Pour tout x ∈ R, nous avons ex ≥ 1+x. Il est simple de vérifier
que la fonction exponentielle est convexe via la positivité de la dérivée seconde. Ceci nous assure alors que, pour
tout x, y ∈ R, nous avons

ex ≥ ey + ey(x − y).

Il suffit ensuite de choisir y = 0 pour conclure.

11.5.1 Inégalités de Young, de Hölder et de Minkowksi (pour aller plus loin)

Voici deux autres inégalités qui s’obtiennent grâce à des arguments de convexité.

Exemple 11.5.3 (Inégalité de Young). Pour tout x, y ∈ [0 + ∞] et tout 1 < p, q < ∞ tels que 1
p + 1

q = 1, nous
avons

xy ≤ 1

p
xp +

1

q
yq. (11.5.2)

L’inégalité est triviale si x = 0 ou y = 0, même chose si x = +∞ ou y = +∞ , nous pouvons donc supposer que
x, y > 0. D’après le théorème de la bijection, il existe donc u, v ∈ R tels que x = eu et y = ev. D’où,

xy = eu+v = e
1
p

pu+ 1
q

qv ≤ 1

p
epu +

1

q
eqv

grâce à la convexité de x "→ ex. Ceci mène, après simplifications, à

xy ≤ 1

p
xp +

1

q
yq.

L’inégalité de Young (11.5.2), permet d’obtenir l’inégalité de Hölder pour les suites 4.

Exemple 11.5.4 (Inégalité de Hölder). Pour toute suites de nombres positifs (ou nuls) (ak) et (bk), pour tout
N ∈ N∗ et pour tout couple 1 < p, q < +∞ tels que 1

p + 1
q = 1 nous avons

N
∑

k=0

akbk ≤
( N

∑

k=0

ap
k

)
1
p
( N

∑

k=0

bq
k

)
1
q

(11.5.3)

Pour établir ceci, il suffit de poser, pour tout k ∈ {0, . . . , N}

xk =
ak

(
∑N

j=0 ap
j

)1/p
et yk =

bk
(

∑N
j=0 aq

j

)1/q

pour ensuite utiliser N + 1 fois l’inégalité de Young (11.5.2) :

N
∑

k=0

xkyk ≤ 1

p

N
∑

k=0

xp
k +

1

q

N
∑

k=0

yq
k.

Ceci mène à
N

∑

k=0

akbk
(

∑N
j=0 ap

j

)1/p(
∑N

j=0 bq
j

)1/q
≤ 1

p

N
∑

k=0

ap
k

∑N
j=0 ap

j

+
1

q

N
∑

k=0

bq
k

∑N
j=0 bq

j

.

Par linéarité, il est possible de factoriser chacune des sommes intervenant ci-dessus par leur dénominateurs (lequel
ne dépend pas de l’indice de sommation k) :

4. Cette inégalité, comme celle de Minkowski, est encore valable pour des intégrales. Nous préciserons ceci dans un chapitre suivant.
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∑N
k=0 akbk

(
∑N

j=0 ap
j

)1/p(
∑N

j=0 bq
j

)1/q
≤ 1

p

∑N
k=0 ap

k
∑N

j=0 ap
j

+
1

q

∑N
k=0 bq

k
∑N

j=0 bq
j

,

d’où
∑N

k=0 akbk
(

∑N
j=0 ap

j

)1/p(
∑N

j=0 bq
j

)1/q
≤ 1

p
+

1

q
= 1

après simplification. La conclusion désirée s’ensuit.

Remarque. Lorsque p = q = 2, l’inégalité de Hölder devient :

N
∑

k=0

akbk ≤

√

√

√

√

N
∑

k=0

a2
k

√

√

√

√

N
∑

k=0

b2
k

et porte le nom d’inégalité de Cauchy-Schwarz. Le lecteur aura probablement rencontré ce résultat dans un contexte
de produit scalaire entre deux vecteurs du plan : si −→u et −→v sont deux vecteurs du plan alors

|−→u · −→v | ≤ ∥−→u ∥2∥−→v ∥2

où ∥ · ∥2 désigne la norme euclidienne d’un vecteur (i.e. si −→u = (x, y) alors ∥−→u ∥2 =
√

x2 + y2).

L’inégalité de Hölder permet d’obtenir une autre inégalité, laquelle peut-être vu comme une extension de
l’inégalité triangulaire : pour tout a, b ∈ R,

|a − b| ≤ |a| + |b|.

Exemple 11.5.5 (Inégalité de Minkowski). Soient p ≥ 1, (ak) et (bk) des suites de nombres positifs. Alors,
l’inégalité suivante est satisfaite : pour tout N ≥ 1, nous avons

( N
∑

k=0

(ak + bk)p

)
1
p

≤
( N

∑

k=0

ap
k

)
1
p

+

( N
∑

k=0

bp
k

)
1
p

. (11.5.4)

Démontrons ceci. Pour cela, observons que

N
∑

k=0

(ak + bk)p =
N

∑

k=0

(ak + bk)p−1ak +
N

∑

k=0

(ak + bk)p−1bk.

Nous allons ensuite majorer, par la même méthode, chacune des sommes apparaissant dans le membre de droite.
Posons q = p

p−1 de sorte que 1
p + 1

q = 1. Nous pouvons alors appliquer l’inégalité de Hölder (11.5.3) qui nous
assure que

N
∑

k=0

(ak + bk)p−1ak ≤
( N

∑

k=0

(ak + bk)(p−1)q

)
1
q

×
( N

∑

k=0

ap
k

)
1
p

=

( N
∑

k=0

(ak + bk)p

)

p−1
p

×
( N

∑

k=0

ap
k

)
1
p

.

Les mêmes arguments montrent que

N
∑

k=0

(ak + bk)p−1bk ≤
( N

∑

k=0

(ak + bk)p

)

p−1

p

×
( N

∑

k=0

bp
k

)
1
p

.

Ainsi, en additionnant ces deux majorations, nous obtenons que

N
∑

k=0

(ak + bk)p ≤
( N

∑

k=0

(ak + bk)p

)

p−1

p

×
( N

∑

k=0

ap
k

)
1
p

+

( N
∑

k=0

(ak + bk)p

)

p−1

p

×
( N

∑

k=0

bp
k

)
1
p

=

( N
∑

k=0

(ak + bk)p

)

p−1
p

×
[ N

∑

k=0

ap
k

)
1
p

+

( N
∑

k=0

bp
k

)
1
p
]
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et il ne reste plus qu’à diviser chaque membre de l’inégalité par
(

∑N
k=0(ak + bk)p

)

p−1

p

pour conclure puisque

∑N
k=0(ak + bk)p

(

∑N
k=0(ak + bk)p

)

p−1

p

=

( N
∑

k=0

(ak + bk)p

)1− p−1

p

=

( N
∑

k=0

(ak + bk)p

)
1
p

.

Remarque. Observons que l’inégalité (11.5.1), appliquée N + 1 fois à x = ak + bk fournit

( N
∑

k=0

(ak + bk)p

)
1
p

≤ 2
p−1

p

[( N
∑

k=0

ap
k

)

+

( N
∑

k=0

bp
k

)]
1
p

.

En outre, lorsque p ≥ 1, la concavité de la fonction x "→ x
1
p entraine (en reprenant la démonstration permettant

d’obtenir l’inégalité (11.5.1)) que, pour tout u, v ≥ 0, nous avons

(u + v)
1
p ≥ 2

p−1

p

(

u
1
p + v

1
p

)

. (11.5.5)

Ainsi, l’inégalité de Minkowski (11.5.4) est un résultat plus fort et plus précis que l’inégalité (11.5.1). En effet,
d’après l’inégalité de Minkowski nous avons

( N
∑

k=0

(ak + bk)p

)
1
p

≤
( N

∑

k=0

ap
k

)
1
p

+

( N
∑

k=0

bp
k

)
1
p

⇐⇒
( N

∑

k=0

(ak + bk)p

)
1
p

≤ u
1
p + v

1
p

en posant u =
∑N

k=0 ap
k et v =

∑N
k=0 ap

k. D’où, en utilisant la concavité de x "→ x
1
p via l’inégalité (11.5.5), nous

avons

( N
∑

k=0

(ak + bk)p

)
1
p

≤ 1

2
p−1

p

(u + v)
1
p

≤ 2
p−1

p (u + v)
1
p = 2

p−1

p ×
[( N

∑

k=0

ap
k

)

+

( N
∑

k=0

bp
k

)]
1
p

.

et le dernier membre de droite correspond à la borne fournie par l’inégalité de convexité (11.5.1).
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