I.N.P. – Fonctions de Plusieurs VariablesEXAMEN FINAL – 14 Juin 2017.

NOM, PRENOM:

Exercice 1. (COURS-6 points). Complétez les phrases suivantes :

- (1) Soit E un espace vectoriel normé et A une partie non vide de E.
 - (a) \overline{A} , l'adhérence de A, est le plus
 - (b) A°, l'intérieur de A est le
 - (c) $x \in A^{\circ}$ si et seulement si
 - (d) $x \in \overline{A}$ si et seulement si
- (2) Soit $f : \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 .
 - (a) $\frac{\partial f}{\partial x}(20,17) = \lim_{t \to 0}$
 - $(b) \ \frac{\partial^2 f}{\partial y^2}(20,17) = \lim_{t \to 0}$

Exercice 2. (9 points). Soit $f : \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2}, & si \quad (x,y) \neq (0,0), \\ 0, & si \quad (x,y) = (0,0). \end{cases}$$

- (1) Expliquez pourquoi $f \in \mathscr{C}^{\infty}(\mathbb{R}^2 \setminus \{(0,0)\})$.
- (2) Montrer que f est continue en (0,0).
- (3) Montrer que f admet des dérivées partielle d'ordre 1 en (0,0).
- (4) Calculer pour $(x,y) \neq (0,0)$ les dérivées partielles $\partial_x f(x,y)$, $\partial_y f(x,y)$.
- (5) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- (6) Montrer que $\partial_{xy}^2 f(0,0)$ et $\partial_{yx}^2 f(0,0)$ existent et sont égales.
- (7) Calculer pour $(x,y) \neq (0,0)$ la dérivée partielle d'ordre $2:\partial_{xy}^2 f(x,y)$.
- (8) Expliquez pourquoi on peut en déduire la valeur de $\partial_{ux}^2 f(x,y)$ sans faire de calcul.
- (9) Montrer que $\partial_{xy}^2 f(x,y)$ n'est pas continue en (0,0).

Exercice 3. (6 points). Soit $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$f(x,y) = x^3 - 3x(1+y^2).$$

On note $K = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ le disque unité fermé (rappel : c'est un fermé borné de \mathbb{R}^2 d'intérieur le disque ouvert : $K^{\circ} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.

- (1) Montrer que $\sup_{(x,y)\in\mathbb{R}^2} f(x,y) = +\infty$ et $\inf_{(x,y)\in\mathbb{R}^2} f(x,y) = -\infty$.
- (2) Etudier les extrema locaux de f sur \mathbb{R}^2 .
- (3) Justifier sans calculs que f est bornée sur K et atteint ses bornes.
- (4) On pose $M = \sup_{(x,y) \in K} f(x,y)$ et $m = \inf_{(x,y) \in K} f(x,y)$. Soit $(x,y) \in K$ vérifiant f(x,y) = M ou f(x,y) = m, montrer que $x^2 + y^2 = 1$.
- (5) Etudier la fonction $[0,2\pi] \ni t \mapsto g(t) := f(\cos(t),\sin(t))$. En déduire (observer que g $g'(t) = -9\sin(t)\cos(2t)$) les valeurs de M et m.

Fin de l'épreuve.

Examen Final – Le Corrigé.

❖ Solution de l'exercice 1.

- (1)(a) \overline{A} , l'adhérence de A, est le plus plus petit fermé contenant A.
 - (b) A° , l'intérieur de A est le est le plus grand ouvert contenu dans A.
 - (c) $x \in A^{\circ}$ si et seulement si il existe r > 0 tel que $B(x, r) \subset A$.
 - (d) $x \in \overline{A}$ si et seulement si pour tout r > 0, $B(x,r) \cap A \neq \emptyset$ (ou encore s'il existe dans A une suite $(a_n)_n$ convergente vers x).

(2)(a)
$$\frac{\partial f}{\partial x}$$
(20,17) = $\lim_{t \to 0} \frac{f(20+t,17) - f(20,17)}{t}$.

(b)
$$\frac{\partial^2 f}{\partial y^2}(20, 17) = \lim_{t \to 0} \frac{\partial_y f(20, 17 + t) - \partial_y f(20, 17)}{t}$$
.

\$\frac{1}{2}\$ Solution de l'exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2}, & \text{si} \quad (x,y) \neq (0,0), \\ 0, & \text{si} \quad (x,y) = (0,0). \end{cases}$$

- (1) f est le quotient deux polynômes donc classe $\mathscr{C}^{\infty}(\mathbb{R}^2)$ celui du dénominateur ne s'annulant qu'en (0,0), il est donc clair que $f \in \mathscr{C}^{\infty}(\mathbb{R}^2 \setminus \{(0,0)\}.$
- (2) En coordonnées polaires :

$$|f(x,y)| = \left| \frac{r^4 \sin(\theta)}{r^2} \right| = |r^2 \sin^2(\theta)| \le r^2 \underset{r \to 0}{\longrightarrow} 0 = f(0,0).$$

f est donc bien continue en (0,0).

(3) Nous avons:

$$\lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$$

donc $\partial_x f(0,0)$ existe et $\partial_x f(0,0) = 0$.

De même

$$\lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^2 - 0}{t} = 0$$

donc $\partial_y f(0,0)$ existe et $\partial_y f(0,0) = 0$.

(4) Pour $(x,y) \neq (0,0)$ un petit calcul nous donne :

$$\partial_x f(x,y) = -\frac{2xy^4}{(x^2+y^2)^2}, \qquad \partial_y f(x,y) = \frac{2y^3(2x^2+y^2)}{(x^2+y^2)^2}.$$

(5) Vu (1), il ne reste plus qu'à prouver la continuité des dérivées partielles d'ordre 1 à l'origine. Des deux questions précédente, si on passe en polaire :

$$|\partial_x f(x,y)| = \left| -\frac{2xy^4}{(x^2 + y^2)^2} \right| \le \frac{2r^5}{r^4} = 2r \underset{r \to 0}{\longrightarrow} 0 = \partial_x f(0,0),$$

$$|\partial_y f(x,y)| = \left| \frac{2y^3(2x^2 + y^2)}{(x^2 + y^2)^2} \right| \le \frac{6r^5}{r^4} = 2r \underset{r \to 0}{\longrightarrow} 0 = \partial_y f(0,0),$$

f est bien de classe C^1 sur \mathbb{R}^2 .

(6) On a:

$$\lim_{t \to 0} \frac{\partial_y f(t,0) - \partial_y f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0, \quad \lim_{t \to 0} \frac{\partial_x f(0,t) - \partial_x f(0,0)}{t} \lim_{t \to 0} \frac{0 - 0}{t} = 0.$$

Donc, $\partial_{xy}^2 f(0,0)$ et $\partial_{yx}^2 f(0,0)$ existent et $\partial_{xy}^2 f(0,0) = 0 = \partial_{yx}^2 f(0,0)$.

(7) Si $(x,y) \neq (0,0)$, alors $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ où f est de classe C^{∞} on peut donc calculer directement la dérivée partielle $\partial^2_{xy} f(x,y)$ et un calcul élémentaire donne

$$\partial_{xy}^2 f(x,y) = -\frac{8x^3y^3}{(x^2 + y^2)^3}.$$

(8) Sur $\mathbb{R}^2 \setminus \{(0,0)\}$ f est classe C^2 , donc par le théorème de Schwarz :

$$\partial_{yx}^2 f(x,y) = \partial_{xy}^2 f(x,y) = -\frac{8x^3y^3}{(x^2+y^2)^3}.$$

(9) Si (x,y) tends vers (0,0) en restant sur la première bissectrice (i.e. x=y):

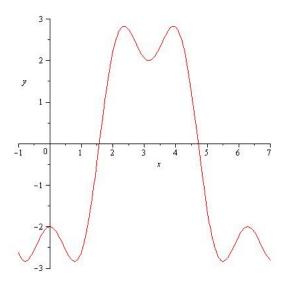
$$\lim_{x \to 0} \partial_{xy}^2 f(x, x) = \lim_{x \to 0} -\frac{8x^6}{(2x^2)^3} = -1 \neq 0 = \partial_{xy}^2 f(0, 0),$$

et $\partial_{xy}^2 f(x,y)$, $\partial_y f(x,y)$ est bien discontinue en (0,0).

♣ Solution de l'exercice 3.

- (1) $f(x,0) = x^3 3x$ donc $\sup_{(x,y) \in \mathbb{R}^2} f(x,y) = +\infty$ et $\inf_{(x,y) \in \mathbb{R}^2} f(x,y) = -\infty$.
- (2) Les points critiques de f vérifient $\partial_x f(x,y) = 3x^2 3(1+y^2) = 0$ et $\partial_y f(x,y) = -6xy = 0$. Vu la seconde équation, il est nécessaire que x = 0 ou y = 0, et en reportant dans la première on trouve deux points critiques : (1,0) et (-1,0). Par le test de Monge, $rt s^2 = -36 < 0$ dans les deux cas : ce sont deux deux points col et f ne possède pas d'extrema locaux dans \mathbb{R}^2 .
- (3) f étant continue sur le fermé borné K, par un théorème du cours, on est alors assuré que f est bornée sur K et atteint ses bornes.
- (4) Soit $(x,y) \in K$ vérifiant f(x,y) = M ou f(x,y) = m. Alors où bien $x^2 + y^2 = 1$ ou bien $x^2 + y^2 < 1$, mais dans ce dernier cas notre extrema (x,y) est un point intérieur donc critique, ce qui est absurde vu (2) donc $x^2 + y^2 = 1$.
- (5) $g(t) := f(\cos(t), \sin(t)) = \cos^3(t) 3\cos(t)[\sin^2(t) + 1]$. f est paire et 2π périodique, on l'étudie sur $[0, \pi]$. De là $g'(t) = -9\sin(t)\cos(2t)$ on en déduit la tableau et les variations de f:

t	0	$\pi/4$	$3\pi/4$	π
g'(t)	_		+	_
g(t)	2	$g(\frac{\pi}{4}) = -2\sqrt{2}$	$g(\frac{3\pi}{4}) =$	$\frac{5\sqrt{2}}{2}$



Et finalement

$$m = g(\pi/4) = f(\sqrt{2}/2\sqrt{2}/2) = -2\sqrt{2}$$
 et $m = g(3\pi/4) = f(-\sqrt{2}/2, \sqrt{2}/2) = 5\sqrt{2}/2$.