Large deviations of Gaussian vectors

Let X be a centered Gaussian random vector, on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$, with values in a real separable Banach space E equipped with its Borel σ-algebra \mathcal{B}, and with norm $\| \cdot \|$.

It is a consequence of the sharp integrability of the norms of Gaussian random vectors (cf. [1]) that

$$\lim_{t \to \infty} t^2 \log \mathbb{P}(\|X\| \geq t) = -\frac{1}{2\sigma^2}$$

where

$$\sigma^2 = \sup_{\xi \in E^*, \|\xi\| \leq 1} E(\langle \xi, X \rangle^2).$$

This result is actually a particular case of a more general large deviation principle for the family of laws of εX as $\varepsilon \to 0$, providing further knowledge on tail behaviors.

The post briefly presents this large deviation theorem. General references on large deviations include [13, 8, 7, 11, 6] etc.

Table of contents

1. Rate function
2. The large deviation principle

References
1 Rate function

Given a centered Gaussian random vector X on $(\Omega, \mathcal{A}, \mathbb{P})$ with values in E, its law μ on the Borel sets of E gives rise to an abstract Wiener space structure (E, \mathcal{H}, μ), in which the Hilbert space $\mathcal{H} \subset E$, with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, is the reproducing kernel Hilbert space associated to the covariance structure of μ (cf. [2]).

For the example of the Wiener measure μ on the Banach space $E = C([0, 1])$ of real continuous functions on $[0, 1]$, law of a standard Brownian motion or Wiener process $W = (W(t))_{t \in [0,1]}$, the reproducing kernel Hilbert space \mathcal{H} is identified as the subspace of $E = C([0, 1])$ consisting of the absolutely continuous functions $h : [0, 1] \to \mathbb{R}$, with almost everywhere derivative h' in $L^2([0, 1])$ (for the Lebesgue measure), and with

$$|h|_{\mathcal{H}} = \left(\int_0^1 (h'(t))^2 \, dt \right)^{1/2}.$$

The rate function $\mathcal{I} : E \to [0, +\infty]$ which will govern the large deviation properties of εX as $\varepsilon \to 0$ is defined as

$$\mathcal{I}(x) = \begin{cases} \frac{1}{2}|x|^2_{\mathcal{H}} & \text{if } x \in \mathcal{H}, \\ +\infty & \text{if } x \notin \mathcal{H}. \end{cases} \quad (3)$$

In the large deviation language, this rate function is a good rate function in the sense that its level sets $\{\mathcal{I} \leq a\}, a \geq 0$, are compact in E (due to the compactness of the \mathcal{H}-balls in E).

2 The large deviation principle

Large deviations for Gaussian measures go back to M. Schilder [12] for the Wiener measure, and to M. Donsker and S. Varadhan [9] in general. The study of [9] actually addresses the large deviation principle for sums of independent Banach space valued random variables, the Gaussian case being a particular case.

In the context exposed in the first section, the following theorem presents the large deviation behavior of the law of εX as $\varepsilon \to 0$. For a subset A of E, let

$$\mathcal{I}(A) = \inf_{x \in A} \mathcal{I}(x).$$

Theorem 1 (The Gaussian large deviation principle). For any closed set F in E,

$$\limsup_{\varepsilon \to 0} \varepsilon^2 \log \mathbb{P}(\varepsilon X \in F) \leq -\mathcal{I}(F). \quad (4)$$
For any open set \(O \) in \(E \),

\[
\liminf_{\varepsilon \to 0} \varepsilon^2 \log \mathbb{P}(\varepsilon X \in O) \geq -\I(O). \tag{5}
\]

Applied to complements of balls, this theorem easily produces the limit (1), together with the observation that \(\sigma = \sup_{|h|_{\mathcal{H}} \leq 1} ||h|| \).

The proof of the upper-bound (4) in Theorem 1 presented here relies on isoperimetric and concentration inequalities (cf. [3, 4]) which provide a very convenient tool to this task. The lower-bound (5) classically relies on the Cameron-Martin translation formula. The combined arguments actually produce a measurable version of the large deviation principle, without referring to any topology associated to the underlying abstract Wiener space (cf. [5, 10]).

Proof. A simple proof of the upper-bound (4) may therefore be provided by the Gaussian isoperimetric inequality (actually only the suitable concentration properties). Namely, let \(F \) be closed in \(E \), and take \(r \) such that \(0 < r < \I(F) \). By the very definition of \(\I(F) \),

\[
F \cap \sqrt{2r} \mathcal{K} = \emptyset,
\]

where \(\mathcal{K} \) is the (closed) unit ball in \(\mathcal{H} \). Since \(F \) is closed and \(\mathcal{K} \) is compact in \(E \), there exists \(\eta > 0 \) such that it still holds true that

\[
F \cap [\sqrt{2r} \mathcal{K} + B_E(0, \eta)] = \emptyset
\]

where \(B_E(0, \eta) \) is the ball with center the origin and with radius \(\eta \) for the norm \(|| \cdot || \) in \(E \). Clearly

\[
\lim_{\varepsilon \to 0} \mathbb{P}(\varepsilon X \in B_E(0, \eta)) = \lim_{\varepsilon \to 0} \mathbb{P}(X \in B_E(0, \frac{\eta}{\varepsilon})) = 1.
\]

Recall now the Gaussian isoperimetric inequality for the law of \(X \) (cf. [3]), expressing that, whenever \(\mathbb{P}(X \in A) \geq \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{1}{2}x^2}dx \) for some \(a \in \mathbb{R} \),

\[
\mathbb{P}(X \in A + s \mathcal{K}) \geq \Phi(a + s)
\]

for every \(s \geq 0 \). For \(\varepsilon > 0 \) small enough, \(\mathbb{P}(X \in B_E(0, \frac{\eta}{\varepsilon})) \geq \frac{1}{2} = \Phi(0) \). Hence,

\[
\mathbb{P}(\varepsilon X \in F) \leq \mathbb{P}(\varepsilon X \notin \sqrt{2r} \mathcal{K} + B_E(0, \eta)) \leq 1 - \Phi\left(\frac{\sqrt{2r}}{\varepsilon}\right) \leq e^{-r/\varepsilon^2}.
\]

Therefore

\[
\limsup_{\varepsilon \to 0} \varepsilon^2 \log \mathbb{P}(\varepsilon X \in F) \leq -r,
\]

which is the result since \(r < \I(F) \) is arbitrary.
As mentioned above, the full strength of the Gaussian isoperimetric inequality is not really needed, and weaker concentration inequalities are enough to achieve the conclusion. For example, as emphasized in [4],

\[\mathbb{P}(X \in A + sK) \geq 1 - e^{-\frac{1}{2}s^2 + \delta(\mu(A))s} \]

for every \(s \geq 0 \), where \(\delta(\mu(A)) \to 0 \) as \(\mu(A) \to 1 \), so that the proof may be developed similarly.

The proof of the lower-bound (5) is an application of the Cameron-Martin translation formula. Let \(h \in O \cap \mathcal{H} \). Since \(O \) is open, there exists \(\eta > 0 \) such that \(h + B_E(0, \eta) \subset O \), and thus

\[\mathbb{P}(\varepsilon X \in O) \geq \mathbb{P}(\varepsilon X \in h + B_E(0, \eta)). \]

In the notation of [2], the Cameron-Martin translation formula yields that

\[\mathbb{P}(\varepsilon X \in h + B_E(0, \eta)) = \mu\left(\frac{h}{\varepsilon} + B_E(0, \frac{\eta}{\varepsilon})\right) \]

\[= \exp\left(- \frac{|h|_H^2}{2\varepsilon^2} \right) \int_{B_E(0, \frac{\eta}{\varepsilon})} \exp\left(- \frac{\tilde{h}}{\varepsilon} \right) d\mu, \]

where it is recalled that \(\tilde{h} \) is Gaussian under \(\mu \) with variance \(|h|_H^2 \) (\(\tilde{h} = \int_0^1 h'(t)dW(t) \) on the Wiener space). By Jensen’s inequality,

\[\int_{B_E(0, \frac{\eta}{\varepsilon})} \exp\left(- \frac{\tilde{h}}{\varepsilon} \right) d\mu \geq \mu(B_E(0, \frac{\eta}{\varepsilon})) \exp\left(- \int_{B_E(0, \frac{\eta}{\varepsilon})} \frac{\tilde{h}}{\varepsilon} d\mu \right). \]

Now

\[\int_{B_E(0, \frac{\eta}{\varepsilon})} \tilde{h} d\mu \leq \int_E |\tilde{h}| d\mu \leq \left(\int_E \tilde{h}^2 d\mu \right)^{1/2} = |h|_H. \]

For every \(\varepsilon > 0 \) small enough, \(\mu(B_E(0, \frac{\eta}{\varepsilon})) \geq \frac{1}{2} \) (for example). As a consequence of the various preceding lower-bounds,

\[\mathbb{P}(\varepsilon X \in O) \geq \frac{1}{2} \exp\left(- \frac{|h|_H^2}{2\varepsilon^2} - \frac{2|h|_H}{\varepsilon} \right) \]

from which it follows that

\[\liminf_{\varepsilon \to 0} \varepsilon^2 \log \mathbb{P}(\varepsilon X \in O) \geq -\frac{1}{2} |h|_H^2 = -\mathcal{I}(h). \]

This result for any \(h \in O \cap \mathcal{H} \) yields the announced lower-bound (5), and completing therefore the proof of Theorem 1.
References

