Admissible shift,
reproducing kernel Hilbert space,
and abstract Wiener space

The standard Gaussian measure \(\gamma_n \), with density \(\frac{1}{(2\pi)^n} e^{-\frac{1}{2} |x|^2} \), \(x \in \mathbb{R}^n \) with respect to the Lebesgue measure on \(\mathbb{R}^n \), is not translation invariant. Shifted measures are described by

\[
\gamma_n(B + h) = e^{-\frac{1}{2} |h|^2} \int_B e^{-(h, x)} d\gamma_n \tag{1}
\]

where \(B + h = \{ x + h; x \in B \} \), \(B \) Borel set in \(\mathbb{R}^n \) and \(h \in \mathbb{R}^n \). In other words, the shifted measure \(\gamma_n(\cdot + h) \) by an element \(h \in \mathbb{R}^n \) is absolutely continuous with respect to \(\gamma_n \), with density \(e^{-\frac{1}{2} |h|^2 - (h, \cdot)} \).

Let now \(\mu \) be the Wiener measure on the Borel sets of the Banach space \(C([0, 1]) \) of real continuous functions on \([0, 1]\), law of a standard Brownian motion or Wiener process \(W = (W(t))_{t \in [0, 1]} \). It is not entirely clear to give a meaning to the preceding translation formula in this infinite-dimensional context, and in particular to make sense of \(|h|^2 \) and \((h, \cdot) \). An early result of H. Cameron and W. Martin [7] answers this question in the following form. If (and only if) \(h : [0, 1] \rightarrow \mathbb{R} \) is absolutely continuous on \([0, 1]\), with almost everywhere derivative \(h' \) in \(L^2([0, 1]) \) (for the Lebesgue measure), the shifted measure \(\mu(\cdot + h) \) is absolutely continuous with respect to \(\mu \), with density

\[
\exp \left(-\frac{1}{2} \int_0^1 h'(t)^2 dt - \int_0^1 h'(t)dW(t) \right),
\]

where \(\int_0^1 h'(t)dW(t) \) is understood as a Wiener (-Itô) integral.
This translation formula actually entails some basic features associated to the Wiener measure, namely the so-called Cameron-Martin Hilbert space of absolutely continuous functions on $[0, 1]$ with almost everywhere derivative h' in $L^2([0, 1])$, and the Wiener integral $\int_0^1 h'(t) dW(t)$. These objects are in fact only generated by the covariance function of W, $\mathbb{E}(W(s)W(t)) = s \wedge t$, $s, t \in [0, 1]$, and give rise to the specific structure consisting of the space $C([0, 1])$, with its topology, the Cameron-Martin, or reproducing kernel, Hilbert space, and the Wiener measure.

This structure, called abstract Wiener space, may be built for any Gaussian measure (on a Banach space for example), and the text below develops the construction in a rather general setting. While the exposition might appear somewhat abstract, it only relies on some standard functional analysis and is not any longer or difficult than it would be for a specific model like the Wiener space. It covers besides, in a most instructive way, several examples of interest, even finite-dimensional. In addition, it naturally puts forward series representations in orthonormal bases of the reproducing kernel Hilbert space (like the trigonometric or Haar expansions of Brownian motion), a most useful property to transfer, in applications, dimension-free statements from finite to infinite-dimensional Gaussian measures and vectors.

The note is mainly extracted from [12]. Some main expositions on Gaussian measures, vectors, processes, in infinite-dimensional spaces are [16, 4, 11, 13, ?, 8, 10, 5, 15]...

Table of contents

1. Gaussian measure and random vector
2. Wiener space factorization
3. Reproducing kernel Hilbert space
4. Gaussian process
5. Abstract Wiener space
6. Series representation
7. Cameron-Martin translation formula

References
1 Gaussian measure and random vector

It is classical that the Lebesgue measure λ_n does not extend to an infinite-dimensional setting. However, Gaussian measures, due in particular to their dimension-free features, may easily be considered in infinite-dimensional spaces. A prototype, and central, example is the Wiener measure, with associated Brownian or Wiener process, on the Banach space $C([0,1])$ of continuous functions on the interval $[0,1]$.

A Gaussian measure μ on a real separable Banach space E equipped with its Borel σ-algebra \mathcal{B}, and with norm $\| \cdot \|$, is a Borel probability measure on (E, \mathcal{B}) such that the law of each continuous linear functional on E is Gaussian. Equivalently, a random variable, or vector, X on some probability space (Ω, \mathcal{A}, P) with values in (E, \mathcal{B}) is Gaussian if its law, on the Borel sets of E, is Gaussian, that is, for every element ξ of the dual space E^* of E, $\langle \xi, X \rangle$ is a real Gaussian variable.

By separability of \mathcal{B}, the distribution of X may also be described by the finite-dimensional distributions of the random process $\langle \xi, X \rangle$, $\xi \in E^*$, and therefore by the covariance operator

$$
E(\langle \xi, X \rangle \langle \zeta, X \rangle) = \int_E \langle \xi, x \rangle \langle \zeta, x \rangle d\mu(x), \quad \xi, \zeta \in E^*
$$

(for μ the law of X). As such, all the standard properties of finite-dimensional Gaussian random vectors extend to this infinite-dimensional setting.

The infinite dimensional setting may be extended to locally convex vector spaces [6], but for simplicity, the exposition here is limited to Banach spaces.

Throughout the note, only centered Gaussian measures and vectors are considered, without further notice.

2 Wiener space factorization

Let μ be a Gaussian measure on (E, \mathcal{B}). As E is separable, μ is a Radon measure in the sense that, for every $B \in \mathcal{B}$,

$$
\mu(B) = \sup \{ \mu(K); K \subset B, K \text{ compact in } E \}.
$$

It is known from the integrability properties of norms of Gaussian random vectors (cf. [1]), that

$$
\sigma = \sup_{\xi \in E^*, \| \xi \| \leq 1} \left(\int_E \langle \xi, x \rangle^2 d\mu(x) \right)^{1/2} < \infty,
$$

(2)
and actually
\[\int_E \|x\|^p d\mu(x) < \infty \quad \text{for every } p > 0. \]

(3)

The abstract Wiener space factorization of the Gaussian measure μ on (E, \mathcal{B}) is given by
\[E^* \xrightarrow{j} L^2(\mu) \xrightarrow{j^*} E, \]
where j is the injection map from E^* into $L^2(\mu) = L^2(E, \mathcal{B}, \mu; \mathbb{R})$ (i.e. $j(\xi) = \langle \xi, \cdot \rangle \in L^2(\mu)$), the dual map j^* of j mapping $L^2(\mu)$ into E (rather than the bi-dual). Indeed, by the integrability property (3), for any element φ of $L^2(\mu)$, the integral $\int_E x \varphi(x) d\mu(x)$ is defined, as an element of E, in the strong sense since
\[\int_E \|x\| \varphi(x) d\mu(x) \leq \left(\int_E \|x\|^2 d\mu(x) \right)^{1/2} \left(\int_E |\varphi|^2 d\mu \right)^{1/2} < \infty. \]

Now, for every $\xi \in E^*$,
\[\langle j(\xi), \varphi \rangle_{L^2(\mu)} = \int_E \langle \xi, x \rangle \varphi(x) d\mu(x) = \langle \xi, \int_E x \varphi(x) d\mu(x) \rangle \]
so that $j^*(\varphi) = \int_E x \varphi(x) d\mu(x) \in E$.

3 Reproducing kernel Hilbert space

The reproducing kernel Hilbert space \mathcal{H} of μ is defined as the subspace $j^*(L^2(\mu))$ of E. By the preceding, its elements are of the form $\int_E x \varphi(x) d\mu(x)$ with $\varphi \in L^2(\mu)$. This description induces a natural scalar product on \mathcal{H} via the covariance of μ by
\[\langle j^*(\varphi), j^*(\psi) \rangle_{\mathcal{H}} = \langle \varphi, \psi \rangle_{L^2(\mu)}, \quad \varphi, \psi \in L^2(\mu). \]

Since $j(E^*) = \text{Ker}(j^*)$, j^* restricted to the closure E_2^* of E^* in $L^2(\mu)$ is linear and bijective onto \mathcal{H}. For simplicity in the notation, set below for $h \in \mathcal{H}$,
\[\tilde{h} = (j^*|_{E_2^*})^{-1}(h) \in E_2^* \subset L^2(\mu). \]

Under μ, \tilde{h} is Gaussian with variance $|h|_{\mathcal{H}}^2$.

Note that σ of (2) is then also $\sup_{x \in K} \|x\|$ where K is the closed unit ball of \mathcal{H} for this Hilbert space scalar product. In particular, for every x in \mathcal{H},
\[\|x\| \leq \sigma |x|_{\mathcal{H}} \]
where \(|x|_H = \langle x, x \rangle_H^{1/2} \). Moreover, \(K \) is a compact subset of \(E \). Indeed, if \((\xi_n)_{n \in \mathbb{N}}\) is a sequence in the unit ball of \(E^* \), there is a subsequence \((\xi_{n'})_{n' \in \mathbb{N}}\) which converges weakly to some \(\xi \) in \(E^* \). Now, since the \(\xi_n \)'s are Gaussian under \(\mu \), \(\xi_{n'} \to \xi \) in \(L^2(\mu) \) so that \(j \) is a compact operator. Hence \(j^* \) is also a compact operator, from which the compactness of \(K \) follows.

The terminology “reproducing kernel” stems from the fact that an element \(\varphi \in L^2(\mu) \) is reproduced, by duality, from the covariance kernel of \(\mu \) as

\[
\int_E \varphi \psi \, d\mu = K(\varphi, \psi)
\]

where \(\psi \) is running through \(L^2(\mu) \). A further illustration of this property in the context of Gaussian processes is provided below.

It is useful to visualize the preceding abstract construction on a number of basic examples. For \(\gamma_n \) the canonical Gaussian measure on \(\mathbb{R}^n \) (equipped with an arbitrary norm), it is plain that \(H = \mathbb{R}^n \) with its Euclidean structure, and \(K \) is the Euclidean (closed) unit ball \(B(0, 1) \).

If \(X \) is a Gaussian vector on \(\mathbb{R}^n \) with non-degenerate covariance matrix \(\Sigma = M^\top M \), the unit ball \(K \) of the reproducing kernel Hilbert space associated to the distribution of \(X \) is the ellipsoid \(M(B(0, 1)) \).

An infinite dimensional version of \(\gamma_n \) might consist of an infinite sequence \((Y_n)_{n \in \mathbb{N}} \) of independent standard normal random variables (on some probability space \((\Omega, \mathcal{A}, \mathbb{P})\)). This sequence does not belong almost surely to the Hilbert space \(\ell^2 \) of square summable sequences, but as soon as \((a_n)_{n \in \mathbb{N}}\) is a (deterministic) sequence in \(\ell^2 \), the new Gaussian sequence \((a_n Y_n)_{n \in \mathbb{N}}\) belongs to \(E = \ell^2 \), and its law \(\mu \) defines an abstract Wiener space \((E, H, \mu)\) with reproducing kernel Hilbert space \(H \) given by the infinite-dimensional ellipsoid consisting of the sequences \((b_n)_{n \in \mathbb{N}}\) such that \((\frac{b_n}{a_n})_{n \in \mathbb{N}}\) belongs to \(\ell^2 \) (assuming the \(a_n \)'s different from zero).

Another illustrative, infinite-dimensional, example is the classical Wiener space associated with Brownian motion, say on \([0, 1]\) and with real values for simplicity (cf. [2]). Let thus \(E \) be the Banach space \(C([0, 1]) \) of all real continuous functions \(x \) on \([0, 1]\) equipped with the uniform norm (the Wiener space), and let \(\mu \) be the distribution of a standard Brownian motion, or Wiener process, \(W = (W(t))_{t \in [0, 1]} \) starting at the origin (the Wiener measure). The dual space of \(C([0, 1]) \) is the space of signed measures on \([0, 1]\), and if \(m \) and \(m' \) are finitely supported measures on \([0, 1]\), \(m = \sum_i c_i \delta_{t_i}, \; c_i, t_i \in \mathbb{R}, \; t_i \in [0, 1], \; m' = \sum_j c'_j \delta_{t'_j}, \; c'_j \in \mathbb{R}, \)
\[t' \in [0, 1], \]

\[\int_E \langle m, x \rangle \langle m', x \rangle d\mu(x) = \mathbb{E}(\langle m, W \rangle \langle m', W \rangle) \]
\[= \sum_{i, j} c_i c'_j \mathbb{E}(W(t_i)W(t'_j)) \]
\[= \sum_{i, j} c_i c'_j (t_i \wedge t'_j) \]

by definition of the covariance of Brownian motion. It follows that the element \(h = j^* j(m) = \int_E x \langle m, x \rangle d\mu(x) \) of \(\mathcal{H} \) is the map \(h : t \in [0, 1] \mapsto \sum_i c_i (t_i \wedge t) \). This map is absolutely continuous, with almost everywhere derivative \(h' \) satisfying
\[
\int_0^1 h'(t)^2 dt = \int_0^1 \left| \sum_i c_i \mathbb{1}_{[0, t_i]} \right|^2 dt
\]
\[= \int_0^1 \sum_{i, j} c_i c_j \mathbb{1}_{[0, t_i]} \mathbb{1}_{[0, t_j]} dt
\]
\[= \sum_{i, j} c_i c_j (t_i \wedge t_j) = \int_E \langle m, x \rangle^2 d\mu(x) = |h|_{\mathcal{H}}^2. \]

By a standard extension, the reproducing kernel Hilbert space \(\mathcal{H} \) associated to the Wiener measure \(\mu \) on \(E \) may then be identified with the Cameron-Martin Hilbert space [7] of the absolutely continuous elements \(h \) of \(C([0, 1]) \) such that \(\int_0^1 h'(t)^2 dt < \infty \). Moreover, if \(h \in \mathcal{H} \),
\[
\tilde{h} = (j^*_{|E_2^1})^{-1}(h) = \int_0^1 h'(t) dW(t)
\]
as a Wiener (-Itô) integral, defining a Gaussian random variable with mean zero and variance \(\int_0^1 h'(t)^2 dt \).

While the Wiener space \(C([0, 1]) \) is equipped here with the uniform topology, other choices are possible. Let \(F \) be a separable Banach space such that the Wiener process \(W \) belongs almost surely to \(F \). Using probabilistic notation, the previous abstract Wiener space theory indicates that if \(\varphi \) is a real valued random variable, on a probability space \((\Omega, \mathcal{A}, \mathbb{P}) \), with \(\mathbb{E}(\varphi^2) < \infty \), then \(h = \mathbb{E}(W \varphi) \in F \). Since \(\mathbb{P}(W \in F \cap C([0, 1])) = 1 \), it immediately follows that the Cameron-Martin Hilbert space may be identified with a subset of \(F \), and is also the reproducing kernel Hilbert space of the Wiener measure on \(F \). Examples of subspaces \(F \) include the Lebesgue spaces \(L^p([0, 1]) \), \(1 \leq p < \infty \), or the Hölder spaces with exponent \(\alpha \), \(0 < \alpha < \frac{1}{2} \), given by
\[
\|x\|_\alpha = \sup_{0 \leq s \neq t \leq 1} \frac{|x(s) - x(t)|}{|s - t|^{\alpha}}, \quad x \in C([0, 1]).
\]
4 Gaussian process

The construction of the reproducing kernel Hilbert space \mathcal{H} of the law of a Gaussian random vector with values in a Banach space may be, at least formally, extended to the setting of Gaussian processes. By definition, a Gaussian process $X = (X_t)_{t \in T}$, on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, indexed by a parameter set T, is a random process such that any finite-dimensional vector $(X_{t_1}, \ldots, X_{t_n})$, $t_1, \ldots, t_n \in T$, is a Gaussian vector in \mathbb{R}^n. The finite-dimensional distributions of the process $X = (X_t)_{t \in T}$ are therefore fully determined by the covariance function $\Sigma(s, t) = \mathbb{E}(X_s X_t)$, $s, t \in T$. As for the Brownian motion, the associated reproducing kernel Hilbert space \mathcal{H} is the span of the functions $s \mapsto \Sigma(s, \cdot)$, $t \in T$, with scalar product $\langle h, k \rangle_{\mathcal{H}} = \sum_{i,j} c_i d_j \Sigma(s_i, t_j)$ whenever $h = \sum_i c_i \Sigma(s_i, \cdot)$, for a finite collection of $c_i \in \mathbb{R}$, $s_i \in T$, and similarly $k = \sum_j d_j \Sigma(\cdot, t_j)$, and

$$\mathbb{E}\left(\left|\sum_i c_i X_{s_i}\right|^2\right) = \langle h, h \rangle_{\mathcal{H}}.$$

5 Abstract Wiener space

In the preceding context of a Gaussian measure μ on a Banach space E with reproducing kernel Hilbert space \mathcal{H}, the triple (E, \mathcal{H}, μ) is called, following L. Gross [9], an abstract Wiener space.

A dual point of view, starting from a given Hilbert space, more commonly used by analysts on Wiener spaces, may be emphasized (cf. [11] for further details). Let \mathcal{H} be a real separable Hilbert space with norm $|\cdot|_{\mathcal{H}}$ and let e_1, e_2, \ldots be an orthonormal basis of \mathcal{H}. Define a simple additive measure ν on the cylinder sets in \mathcal{H} by

$$\nu(x \in \mathcal{H}; (\langle x, e_1 \rangle, \ldots, \langle x, e_n \rangle) \in B) = \gamma_n(B)$$

for all Borel sets B in \mathbb{R}^n. Let $\| \cdot \|$ be a measurable semi-norm on \mathcal{H}, and denote by E the completion of \mathcal{H} with respect to $\| \cdot \|$. Then $(E, \| \cdot \|)$ is a real separable Banach space. If $\xi \in E^*$, consider $\xi_{\mathcal{H}} : \mathcal{H} \to \mathbb{R}$ that is identified with an element h in $\mathcal{H} = \mathcal{H}^*$ (in the preceding language, $h = j^* j(\xi)$). Let then μ be the (σ-additive) extension of ν on the Borel sets of E. In particular, the distribution of $\xi \in E^*$ under μ is Gaussian with mean zero and variance $|h|^2_{\mathcal{H}}$. Therefore, μ is a Gaussian Radon measure on E with reproducing kernel Hilbert space \mathcal{H}, and (E, \mathcal{H}, μ) is an abstract Wiener space. With respect to this
approach, the abstract Wiener space construction of the preceding sections focuses more on the Gaussian measure.

6 Series representation

The next property is a useful series representation of Gaussian random vectors which can efficiently be used to transfer (dimension-free) properties from finite-dimensional to infinite-dimensional Gaussian measures. The Cameron-Martin translation formula (see the next section) may for example be approached in this way. Another illustration is the extension of the isoperimetric inequality to infinite-dimensional Gaussian measures (cf. [3]).

The result puts besides forward the fundamental Gaussian measurable structure consisting of the canonical Gaussian product measure on \mathbb{R}^N with reproducing kernel Hilbert space ℓ^2.

Theorem 1. Let (E, \mathcal{H}, μ) a Wiener triple, $(e_k)_{k \geq 1}$ an orthonormal basis of \mathcal{H}, and $(g_k)_{k \geq 1}$ a sequence of independent real standard normal variables on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Then the series $X = \sum_{k=1}^{\infty} g_k e_k$ converges in E almost surely and in every L^p, and is distributed according to μ.

In the example of the Wiener measure on the space $E = C([0, 1])$ of continuous functions on $[0, 1]$, any orthonormal basis $(h_k)_{k \geq 1}$ of $L^2([0, 1])$ for the Lebesgue measure, gives rise to a Schauder basis

$$e_k(t) = \int_0^t h_k(s)ds, \quad t \in [0, 1], \; k \geq 1,$$

of $E = C([0, 1])$ to which the preceding Theorem 1 applies. Now, in this concrete example, specific bases $(h_k)_{k \geq 1}$ are of interest, such as the trigonometric or Haar bases. Each of them actually provides a simple approach to continuity of the Brownian paths (cf. [2]).

Theorem 1 actually entails a somewhat more precise statement. Since μ is a Radon measure, the space $L^2(\mu)$ is separable and the closure E_2^* of E^* in $L^2(\mu)$ consists of Gaussian random variables on the probability space (E, \mathcal{B}, μ). Let $(g_k)_{k \geq 1}$ denote an orthonormal basis of E_2^*, and set $e_k = j^*(g_k), \; k \geq 1$. Then $(e_k)_{k \geq 1}$ defines a complete orthonormal system in \mathcal{H}, and $(g_k)_{k \geq 1}$ is a sequence on (E, \mathcal{B}, μ) of independent standard Gaussian random variables.

A proof of Theorem 1 may, for example, be obtained from a vector valued-martingale convergence theorem (although a direct approach in many specific situations is often easier to apprehend). Here are some details. Recall that $\int_E \|x\|^p d\mu(x) < \infty$ for every $p > 0$. Denote by \mathcal{B}_n the σ-algebra generated by g_1, \ldots, g_n. It is easily seen that the conditional expectation of the identity map on (E, μ) with respect to \mathcal{B}_n is equal to $X_n = \sum_{k=1}^{n} g_k e_k$.

8
By the vector-valued martingale convergence theorem, see [17], the series \(X = \sum_{k=1}^{\infty} g_k e_k \) converges almost surely and in any \(L^p \) -space. Since moreover \(e_k = \int_{E} x \varphi_x d\mu \), \(k \geq 1 \), where \((\varphi_x)_{k \geq 1} \) is an orthonormal basis of \(L^2(\mu) \) (by the reproducing kernel property),

\[
\mathbb{E}(\langle \xi, X \rangle^2) = \sum_{k=1}^{\infty} \langle \xi, e_k \rangle^2 = \sum_{k=1}^{\infty} \left(\int_{E} \langle \xi, x \rangle \varphi_x d\mu \right)^2 = \int_{E} \langle \xi, x \rangle^2 d\mu(x)
\]

for every \(\xi \) in \(E^* \), so that \(X \) has law \(\mu \), and the last claim follows.

As a consequence of this series representation, it may be deduced that the closure \(\overline{\mathcal{H}} \) of \(\mathcal{H} \) in \(E \) coincides with the support of \(\mu \) (for the topology given by the norm on \(E \)), a property that shows the coherence of the abstract Wiener space construction.

7 Cameron-Martin translation formula

After the preceding somewhat lengthy developments, this last section addresses the translation formula for infinite-dimensional Gaussian measures. Actually, the series representation in an orthonormal basis of the reproducing kernel Hilbert space may be used to access the Cameron-Martin translation formula discussed in the introduction from its finite-dimensional version (cf. e.g. [5, 7]).

Theorem 2 (The Cameron Martin formula). On an abstract Wiener space \((E, \mathcal{H}, \mu)\), for any \(h \) in \(\mathcal{H} \), the shifted probability measure \(\mu(\cdot + h) \) is absolutely continuous with respect to \(\mu \), with density given by the formula

\[
\mu(B + h) = e^{-\frac{1}{2}h^2} \int_B e^{-\tilde{h}} d\mu
\]

for every Borel set \(B \) in \(E \), where it is recalled that \(\tilde{h} = (j^*|_{E^2})^{-1}(h) \).

As developed first in [7], it takes an explicit form on the standard Wiener space. Namely, for \(h \in \mathcal{H} \), \(\tilde{h} = (j^*|_{E^2})^{-1}(h) = \int_0^1 h'(t) dW(t) \), so that if \(\mu \) is the Wiener measure on \(E = C([0,1]) \), the shifted measure \(\mu(\cdot + h) \) has density

\[
\exp \left(-\frac{1}{2} \int_0^1 h'(t)^2 dt - \int_0^1 h'(t) dW(t) \right)
\]

with respect to \(\mu \).

References

