L2 - Math4

Exercices corrigés sur les séries numériques

1 Enoncés

Exercice 1 Soient $\sum a_n$ et $\sum b_n$ deux séries à termes strictement positifs vérifiant :

$$\exists n_{\circ} \in \mathbb{N}: \quad \forall n \geq n_{\circ}, \quad \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}.$$

Montrer que

- (1) si $\sum b_n$ converge, alors $\sum a_n$ converge;
- (2) si $\sum a_n$ diverge, alors $\sum b_n$ diverge.

Exercice 2 Soient α et β deux réels. On étudie la série $\sum_{n>1}u_n$ avec

$$u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}.$$

Cette série s'appelle la série de Bertrand.

- (1) Étudier le cas $\alpha > 1$. On posera $\gamma := (1 + \alpha)/2$ et on montrera que $u_n = O(1/n^{\gamma})$.
- (2) Étudier le cas $\alpha < 1$.
- (3) On étudie maintenant le cas $\alpha = 1$.
 - (a) Soit f_{β} : $]1,\infty[\to \mathbb{R}$ la fonction définie par

$$f_{\beta}(t) = \frac{1}{t(\ln t)^{\beta}}.$$

Montrer qu'il existe $n_{\circ} \in \mathbb{N}$ tel que f_{β} soit décroissante sur $]n_{\circ}, \infty[$.

- (b) On suppose $\beta = 1$. Montrer, par comparaison avec une intégrale, que la série diverge.
- (c) On suppose $\beta > 1$. Montrer, par comparaison avec une intégrale, que la série converge.
- (d) Étudier le cas $\beta < 1$.

Exercice 3 Calculer la somme des séries

$$\sum_{n\geq 1} \frac{1}{q^n} \text{ (pour } q \in \mathbb{R}^*) \quad \text{ et } \quad \sum_{n\geq 1} \frac{1}{n(n+1)}.$$

Exercice 4 Étudier la nature des séries suivantes :

$$\sum_{n\geq 1} \frac{1}{n!}, \qquad \sum_{n\geq 1} \frac{1}{n^n}, \qquad \sum_{n\geq 1} \frac{n!}{n^n}, \qquad \sum_{n\geq 1} \frac{n^n}{(2n)!}.$$

Exercice 5 Soient $a \in \mathbb{R}$ et $\alpha \in \mathbb{R}_+^*$. Étudier, selon les valeurs de a, la nature des séries suivantes :

$$\sum_{n\geq 1} \frac{a^n}{n!}, \qquad \sum_{n\geq 1} \frac{a^n}{n^{\alpha}}.$$

1

Exercice 6 (1) Montrer que la série de terme général $u_n = n^{-1} + \ln n - \ln(n+1)$ est convergente.

(2) En déduire que la suite

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n.$$

admet une limite l. Cette limite s'appelle la constante d'Euler.

Exercice 7 Étudier la nature des séries suivantes :

$$\sum_{n \geq 1} \left(n \ln \left(1 + \frac{1}{n} \right) - \frac{2n}{2n+1} \right), \qquad \sum_{n \geq 2} \frac{1}{n \ln n!}, \qquad \sum_{n \geq 2} \frac{n}{(\ln n!)^2}, \qquad \sum_{n \geq 1} \frac{(n!)^c}{(2n)!} \ \text{avec} \ c > 0.$$

Exercice 8 Étudier la nature des séries suivantes :

$$\sum_{n \geq 2} \frac{(-1)^n}{n^2 + (-1)^n}, \qquad \sum_{n \geq 1} \frac{1 + (-1)^n \sqrt{n}}{n}, \qquad \sum_{n \geq 2} (-1)^n \sqrt{n} \ln \left(\frac{n+1}{n-1} \right).$$

Exercice 9 Étudier la nature des séries suivantes :

$$\sum_{n\geq 2} \ln\left(1 + \frac{(-1)^n}{n}\right), \qquad \sum_{n\geq 1} \sin\left(\frac{(-1)^n}{n}\right).$$

Exercice 10 Montrer que les séries de termes généraux

$$u_n := \frac{(-1)^n}{\sqrt{n}}$$
 et $v_n := \frac{(-1)^n}{\sqrt{n} + (-1)^n}$

ne sont pas de même nature, bien que $u_n \sim v_n$.

Exercice 11 Soient $a, b \in \mathbb{R}_{+}^{*}$. Étudier la série de terme général

$$u_n := \frac{a^n 2^{\sqrt{n}}}{2\sqrt{n} + h^n}.$$

Exercice 12 Montrer que la série $\sum_{n\in\mathbb{N}} u_n$ avec

$$u_n := \ln\left(\cos\frac{1}{2^n}\right)$$

est convergente et calculer sa somme. Indication : on utilisera la formle de trigonométrie

$$\sin\left(\frac{1}{2^{n-1}}\right) = 2\sin\left(\frac{1}{2^n}\right)\cos\left(\frac{1}{2^n}\right).$$

2 Solutions

Solution de l'exercice 1 Posons $M := a_{n_{\circ}}/b_{n_{\circ}}$. Il est clair que M > 0. Nous allons montrer par récurrence que, pour tout $n \ge n_{\circ}$, $a_n \le Mb_n$. La propriété est évidemment vraie pour $n = n_{\circ}$. Supposons qu'elle soit vraie au rang n. Alors,

$$a_{n+1} = a_n \frac{a_{n+1}}{a_n} \le Mb_n \frac{b_{n+1}}{b_n} = Mb_{n+1},$$

et la propriété est établie au rang n+1. Elle est donc vraie pour tout $n \ge n_{\circ}$, et nous pouvons maintenant montrer les points (1) et (2).

(1) Supposons que $\sum b_n$ converge. Alors, pour tout $N \geq n_o$,

$$\sum_{n=0}^{N} a_n = \sum_{n=0}^{n_0 - 1} a_n + \sum_{n=0}^{N} a_n \le \alpha + M \sum_{n=n_0}^{N} b_n \le \alpha + M \sum_{n=n_0}^{\infty} b_n,$$

où $\alpha := \sum_{n=0}^{n_{\circ}-1} a_n$. Ainsi, la suite des sommes partielles $\left(\sum_{n=0}^{N} a_n\right)_N$, qui est croissante, est majorée par la constante réelle $\alpha + M \sum_{n=n_{\circ}}^{\infty} b_n$. Elle est donc convergente, ce qui revient à dire que la série $\sum a_n$ est convergente.

(2) Supposons que $\sum a_n$ diverge. Alors, pour tout $N \geq n_0$,

$$\sum_{n=0}^{N} b_n = \sum_{n=0}^{n_{\circ}-1} b_n + \sum_{n_{\circ}}^{N} b_n \ge \beta + \frac{1}{M} \sum_{n=n_{\circ}}^{N} a_n,$$

où $\beta := \sum_{n=0}^{n_{\circ}-1} b_n$. Puisque la suite $\left(\sum_{n=0}^{N} a_n\right)_N$ tend vers l'infini, la suite $\left(\sum_{n=0}^{N} b_n\right)_N$ tend aussi vers l'infini, ce qui revient à dire que la série $\sum_{n=0}^{N} b_n$ est divergente.

Solution de l'exercice 2

(1) Si $\alpha > 1$, alors $\gamma = (1 + \alpha)/2 > 1$. On a :

$$n^{\gamma}\frac{1}{n^{\alpha}(\ln n)^{\beta}} = \frac{1}{n^{\alpha-\gamma}(\ln n)^{\beta}} = \frac{1}{n^{(\alpha-1)/2}(\ln n)^{\beta}} \ \longrightarrow \ 0 \quad \text{lorsque} \quad n \to \infty,$$

puisque $\alpha - \gamma = (\alpha - 1)/2 > 0$. Donc, pour n assez grand, on a l'inégalité

$$\frac{1}{n^{\alpha}(\ln n)^{\beta}} \le \frac{1}{\gamma}.$$

Ainsi, par comparaison avec une série de Riemann convergente (puisque $\gamma > 1$), on obtient la convergence de la série $\sum u_n$ dans ce cas.

(2) Si $\alpha < 1$, alors $1 - \alpha > 0$. On a :

$$n\frac{1}{n^{\alpha}(\ln n)^{\beta}} = \frac{n^{1-\alpha}}{(\ln n)^{\beta}} = \longrightarrow \infty \quad \text{lorsque} \quad n \to \infty,$$

donc, pour n assez grand,

$$\frac{1}{n^{\alpha}(\ln n)^{\beta}} > \frac{1}{n}.$$

Ainsi, par comparaison avec une série de Riemann divergente (la série harmonique), on obtient la divergence de la série $\sum u_n$ dans ce cas.

(3.a) La fonction f_{β} est dérivable sur $]1, \infty[$ et, pour tout t > 1,

$$f'_{\beta}(t) = -\frac{(\ln t)^{\beta - 1}}{t^2 (\ln t)^2 \beta} (\ln t + \beta).$$

Puisque $\ln t + \beta > 0$ pour $t > e^{-\beta}$, la fonction f_{β} est décroissante sur $]e^{-\beta}, \infty[$. Donc, en choisissant $n_{\circ} > \max\{2, e^{-\beta}\},$

$$\sum_{n\geq 2} \frac{1}{n(\ln n)^\beta} \quad \text{et} \quad \int_{n_\circ}^\infty f_\beta(t) \, \mathrm{d}t$$

sont de même nature d'après le cours.

(3.b) Si $\beta = 1$, alors

$$\int_{n_0}^{\infty} f_{\beta}(t) dt = \int_{n_0}^{\infty} \frac{1}{t \ln t} dt = \lim_{A \to \infty} \left[\ln(\ln t) \right]_{n_0}^{A} = \lim_{A \to \infty} \left(\ln(\ln A) - \ln(\ln n_0) \right) = \infty.$$

La série est alors divergente.

(3.c) Si $\beta > 1$, alors

$$\int_{n_0}^{\infty} f_{\beta}(t) dt = \int_{n_0}^{\infty} \frac{1}{t(\ln t)^{\beta}} dt = \lim_{A \to \infty} \left[\frac{(\ln t)^{1-\beta}}{1-\beta} \right]_{n_0}^{A} = \frac{1}{(\beta-1)(\ln n_0)^{\beta-1}} \in \mathbb{R}.$$

La série est alors convergente.

(3.d) Si $\beta < 1$, alors

$$\int_{n_0}^{\infty} f_{\beta}(t) dt = \int_{n_0}^{\infty} \frac{1}{t(\ln t)^{\beta}} dt = \lim_{A \to \infty} \left[\frac{(\ln t)^{1-\beta}}{1-\beta} \right]_{n_0}^A = \infty.$$

La série est alors divergente.

Solution de l'exercice 3 La première série est une série géométrique de raison q^{-1} . Si $|q| \le 1$, la série est grossièrement divergente. Si |q| > 1, la série et convergente et

$$\sum_{n=1}^{n} \frac{1}{q^n} = \sum_{n=0}^{n} \frac{1}{q^n} - 1 = \frac{1}{1 - q^{-1}} - 1 = \frac{1}{q - 1}.$$

Pour la deuxième série, on remarque tout d'abord que

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$$

de sorte que, par téléscopage,

$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{N-1} - \frac{1}{N}\right) + \left(\frac{1}{N} - \frac{1}{N+1}\right) = 1 - \frac{1}{N+1} \longrightarrow 1$$

lorsque $N \to \infty$. La somme de la série vaut donc 1.

Solution de l'exercice 4

• Posons $v_n := 1/n!$. On a:

$$\frac{v_{n+1}}{v_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1} \longrightarrow 0 \text{ lorsque } n \to \infty.$$

La règle de d'Alembert montre alors que $\sum v_n$ est convergente.

• Posons $w_n := 1/n^n$. On a:

$$\frac{w_{n+1}}{w_n} = \frac{n^n}{(n+1)^{n+1}} = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n \longrightarrow 0 \text{ lorsque } n \to \infty.$$

La règle de d'Alembert montre alors que $\sum w_n$ est convergente.

• Rappelons la formule de Stirling:

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1, \quad \text{autrement dit} \quad n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Posons $x_n = n^{1/2}e^{-n}$. On a :

$$\frac{x_{n+1}}{x_n} = \left(\frac{n+1}{n}\right)^{1/2} \frac{e^{-(n+1)}}{e^{-n}} = \left(1 + \frac{1}{n}\right)^{1/2} e^{-1} \longrightarrow \frac{1}{e < 1} \text{ lorsque } n \to \infty.$$

La règle de d'Alembert montre alors que $\sum x_n$ est convergente, et donc que $\sum (n!/n^n)$ est convergente.

• D'après la formule de Stirling,

$$(2n)! \sim \sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}.$$

Donc,

$$\frac{n^n}{(2n)!} \sim \frac{1}{\sqrt{4\pi n}} \left(\frac{e}{2}\right)^{2n} \frac{n^n}{n^{2n}} = \frac{1}{\sqrt{4\pi n}} \left(\frac{e}{2}\right)^{2n} \frac{1}{n^n} =: y_n.$$

On a:

$$\frac{y_{n+1}}{y_n} = \frac{\sqrt{4\pi n}}{\sqrt{4\pi (n+1)}} \left(\frac{e}{2}\right)^{2(n+1)-2n} \frac{n^n}{(n+1)^{n+1}} = \sqrt{\frac{n}{n+1}} \left(\frac{e}{2}\right)^2 \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} \longrightarrow \frac{1}{e} < 1$$

lorsque $n \to \infty$. La règle de d'Alembert montre alors que $\sum y_n$ est convergente, et donc que $\sum (n^n/(2n)!)$ est convergente.

Solution de l'exercice 5 Pour les deux séries, le cas a = 0 donne lieu à la série nulle et présente donc peu d'intérêt. Nous supposons donc dans la suite que $a \neq 0$.

• Posons $v_n := |a|^n / n!$. On a:

$$\frac{v_{n+1}}{v_n} = \frac{|a|}{n+1} \longrightarrow 0 \quad \text{lorsque} \quad n \to \infty.$$

La règle de d'Alembert montre alors que $\sum v_n$ est convergente, donc que $\sum (a^n/n!)$ est absolument convergente.

• Posons $v_n := |a|^n / n^{\alpha}$. On a :

$$\frac{v_{n+1}}{v_n} = |a| \left(\frac{n}{n+1}\right)^{\alpha} \longrightarrow |a| \quad \text{lorsque} \quad n \to \infty.$$

Si |a| < 1, la série $\sum v_n$ est convergente d'après la règle de d'Alembert, donc $\sum a^n/n^{\alpha}$ est absolument convergente. Si |a| < 1,

$$\ln \frac{|a|^n}{n^{\alpha}} = n \ln |a| - \alpha \ln n \longrightarrow \infty$$
, donc $\frac{|a|^n}{n^{\alpha}} \longrightarrow \infty$ lorsque $n \to \infty$,

et la série $\sum a^n/n^{\alpha}$ est grossièrement divergente. Reste à examiner le cas $|\alpha|=1$. Si a=1, la série n'autre que la série de Riemann, elle est donc convergente si $\alpha>1$ et divergente si $\alpha\in]0,1]$. Enfin, si a=-1, la série est alternée, et comme $1/n^{\alpha}\to 0$, lorsque $n\to\infty$, la série est convergente.

Solution de l'exercice 6

(1) On remarque que

$$u_n = \frac{1}{n} + \ln n - \ln(n+1) = \frac{1}{n} - \left[\ln t\right]_n^{n+1} = \frac{1}{n} - \int_n^{n+1} \frac{1}{t} dt.$$

De la décroissance de la fonction $t \mapsto t^{-1}$ (entre n et n+1), on déduit que

$$\frac{1}{n} \ge \int_{n}^{n+1} \frac{1}{t} dt \ge \frac{1}{n+1}$$
, donc que $0 \le u_n \le \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$.

Puisque la série

$$\sum_{n>1} \frac{1}{n(n+1)}$$

est convergente (voir l'exercice 3), la série $\sum u_n$ est convergente.

(2) On a:

$$\sum_{n=1}^{\infty} u_n = \lim_{N \to \infty} \sum_{n=1}^{N} u_n$$

$$= \lim_{N \to \infty} \left(1 + \ln 1 - \ln 2 \right) + \left(\frac{1}{2} + \ln 2 - \ln 3 \right) + \dots + \left(\frac{1}{N} + \ln N - \ln(N+1) \right)$$

$$= \lim_{N \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{N} - \ln N + \ln \frac{N}{N+1} \right)$$

$$= \lim_{N \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{N} - \ln N \right).$$

On voit donc que la limite de la dernière expression existe et coïncide avec la somme de la série $\sum u_n$.

Solution de l'exercice 7

• En utilisant le développement limité de $\ln(1+t)$ et $(1+t)^{-1}$ en zéro, on vérifie facilement que

$$n\ln\left(1+\frac{1}{n}\right) = 1 - \frac{1}{2n} + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right) \qquad \text{et} \qquad \frac{2n}{2n+1} = 1 - \frac{1}{2n} + \frac{1}{4n^2} + o\left(\frac{1}{n^2}\right).$$

On voit donc que, à partir d'un certain rang,

$$u_n := \sum_{n \ge 1} \left(n \ln \left(1 + \frac{1}{n} \right) - \frac{2n}{2n+1} \right) > 0, \text{ et que } u_n \sim \frac{1}{12n^2} \text{ lorsque } n \to \infty.$$

D'après ce que l'on sait des séries de Riemenn, la série $\sum u_n$ est convergente.

• Rappelons la formule de Stirling : $n! \sim \sqrt{2\pi n} (n/e)^n$. On a donc :

$$\ln n! \sim \frac{1}{2} \ln(2\pi n) + n(\ln n - 1) \sim n \ln n, \quad \text{soit} \quad v_n := \frac{1}{n \ln n!} \sim \frac{1}{n^2 \ln n}.$$

On s'appuie donc sur la série de Bertrand étudiée dans l'exercice 2, avec $\alpha = 2$ et $\beta = 1$, qui est convergente dans ce cas. La série $\sum v_n$ est donc convergente.

• On a déjà vu plus haut que $\ln n! \sim n \ln n$ lorsque $n \to \infty$. Donc

$$w_n := \frac{n}{(\ln n!)^2} \sim \frac{1}{n(\ln n)^2}$$
 lorsque $n \to \infty$.

On s'appuie à nouveau sur la séries de Bertrand, avec $\alpha = 1$ et $\beta = 2$, qui est encore convergente. On en déduit la convergence de la série $\sum w_n$.

• Posons $x_n := (n!)^c/(2n)!$. On a :

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^c}{(2n+1)(2n+2)} = \frac{1}{4}(n+1)^{c-2}\frac{2n+2}{2n+1} \longrightarrow \begin{cases} \infty & \text{si } c > 2, \\ 1/4 & \text{si } c = 2, \\ 0 & \text{si } c < 2, \end{cases}$$

lorsque $n \to \infty$. D'après la règle de d'Alembert, $\sum x_n$ est divergente si c > 2 et convergente si $c \le 2$.

Solution de l'exercice 8

• Posons $u_n := (-1)^n/(n^2+(-1)^n)$ pour $n \geq 2$. La série $\sum u_n$ est alternée, avec

$$|u_n| = \frac{1}{n^2 + (-1)^n} \sim \frac{1}{n^2}.$$

Donc $\sum |u_n|$ est converge, d'après ce que l'on sait des séries de Riemann, de sorte que la série $\sum u_n$ est absolument convergente.

• On a:

$$v_n := (-1)^n \left(\frac{1}{\sqrt{n}} + \frac{(-1)^n}{n}\right) = (-1)^n a_n$$
 avec $a_n := \frac{1}{\sqrt{n}} + \frac{(-1)^n}{n} \longrightarrow 0$ lorsque $n \to \infty$.

Toutefois, on ne peut pas appliquer le théorème sur les séries alternées, car la suite positive $(a_n)_{n\geq 1}$ n'est pas monotone. On procède donc autrement. On remarque ici simplement que

$$v_n = \frac{1}{n} + \frac{(-1)^n}{\sqrt{n}}.$$

Le terme général est donc la somme du terme général d'une série divergente (la série harmonique) et d'une série convergente. En effet, $\sum (-1)^n/\sqrt{n}$ est alternée, et la suite $(1/\sqrt{n})_n$ est décroissante! On déduit alors que la série $\sum v_n$ est divergente.

• En utilisant le développement limité en zéro de la fonction $t\mapsto \ln(1+t)$, on peut écrire :

$$w_n := (-1)^n \sqrt{n} \ln \left(\frac{n+1}{n-1} \right)$$

$$= (-1)^n \sqrt{n} \ln \left(1 + \frac{2}{n-1} \right)$$

$$= (-1)^n \sqrt{n} \left(\frac{2}{n-1} - \frac{2}{(n-1)^2} + o\left(\frac{1}{(n-1)^2} \right) \right)$$

$$= (-1)^n \frac{2\sqrt{n}}{n-1} + (-1)^n \left(\frac{-2\sqrt{n}}{(n-1)^2} + o\left(\frac{\sqrt{n}}{(n-1)^2} \right) \right)$$

Le second terme, dans la dernière ligne ci-dessus, est le terme général d'une série absolument convergente, puisque sa valeur absolue est équivalente à $2/n^{3/2}$. D'autre part,

$$\sum_{n>2} (-1)^n \frac{2\sqrt{n}}{n-1} = \sum_{n>2} (-1)^n a_n \quad \text{avec} \quad a_n := \frac{2\sqrt{n}}{n-1}.$$

Or, il est clair que (a_n) tend vers zéro lorsque $n \to \infty$. De plus

$$\frac{n}{n-1} > \frac{n+1}{n} > \sqrt{\frac{n+1}{n}},$$

où la première inégalité s'explique par la décroissance de la suite $(n/(n-1))_n$, et la seconde par le fait que (n+1)/n > 1. On déduit des inégalités ci-dessus que

$$\frac{\sqrt{n}}{n-1} > \frac{\sqrt{n+1}}{n},$$

et donc, que la suite (a_n) est strictement décroissante. D'après le théorème sur les séries alternées, la série

$$\sum_{n\geq 2} (-1)^n \frac{2\sqrt{n}}{n-1}$$

et convergente, et il en va donc de même de la série $\sum w_n$.

Solution de l'exercice 9

• En utilisant le developpement limité d'ordre 2 en zéro de $t\mapsto \ln(1+t)$, on vérifie que

$$u_n := \ln\left(1 + \frac{(-1)^n}{n}\right) = \frac{(-1)^n}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

La série $\sum (-1)^n/n$ est donc alternée, et convergente puisque $a_n := 1/n$ est décroissante et tend vers zéro. Par ailleurs, d'après ce que l'on sait des séries de Riemann,

$$-\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

est le terme général d'une série convergente. Il s'ensuit que la série $\sum_{n\geq 2} u_n$ est convergente.

• En utilisant le developpement limité d'ordre 2 en zéro de $t \mapsto \sin t$, on vérifie que

$$v_n := \sin\left(\frac{(-1)^n}{n}\right) = \frac{(-1)^n}{n} - \frac{(-1)^n}{3n^2} + o\left(\frac{1}{n^4}\right).$$

Comme précédemment, la série alternée $\sum (-1)^n/n$ est convergente, et la série de terme général

$$-\frac{(-1)^n}{3n^2} + o\left(\frac{1}{n^4}\right)$$

est absolument convergente d'après ce que l'on sait des séries de Riemann. La série $\sum_{n\geq 1} v_n$ est donc convergente.

Solution de l'exercice 10 La série $\sum_{n\geq 2} u_n$ est convergente, car elle est alternée et la suite $a_n:=1/\sqrt{n}$ est décroissante et converge vers zéro. Si $\sum_{n\geq 2} v_n$ était convergente, alors $\sum_{n\geq 2} (u_n-v_n)$ serait aussi convergente. Or,

$$u_n - v_n = (-1)^n \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n} + (-1)^n} \right) = (-1)^n \left(\frac{(-1)^n}{\sqrt{n}(\sqrt{n} + (-1)^n} \right) = \frac{1}{n + (-1)^n \sqrt{n}}.$$

La série $\sum_{n\geq 2}(u_n-v_n)$ est à termes positifs, et équivalente à $\sum n^{-1}$, qui est divergente. On a donc une contradiction, ce qui montre que la série $\sum_{n\geq 2}v_n$ est divergente.

Solution de l'exercice 11

• Supposons a < 1. Puisque, pour tout $n \in \mathbb{N}$,

$$0 \le u_n = \frac{a^n}{1 + b^n 2^{-\sqrt{n}}} \le a^n,$$

la série $\sum u_n$ est convergente dans ce cas, quelle que soit la valeur de b > 0.

- Supposons $a \ge 1$. Deux cas se produisent alors selon la valeur de b.
 - Si $b \leq 1$, alors la suite $(b^n 2^{-\sqrt{n}})_n$ est bornée, disons par une constante M > 0, donc

$$u_n = \frac{a^n}{1 + b^n 2^{-\sqrt{n}}} \ge \frac{a^n}{1 + M}.$$

Puisque $a \ge 1$, ceci montre que la série est divergente.

- Supposons finalement que b > 1. On a :

$$\frac{a^n 2^{\sqrt{n}}}{2^{\sqrt{n}} + b^n} = \left(\frac{a}{b}\right)^n \frac{2^{\sqrt{n}}}{1 + \frac{2^{\sqrt{n}}}{b^n}} \sim \left(\frac{a}{b}\right)^n 2^{\sqrt{n}} \left(1 - \frac{2^{\sqrt{n}}}{b^n}\right) \sim \left(\frac{a}{b}\right)^n 2^{\sqrt{n}} \quad \text{lorsque} \quad n \to \infty,$$

car $2^{\sqrt{n}}b^{-n} \to 0$. Dans ce cas, si $a \ge b$, alors la série est grossièrement divergente, et si a < b, la série est convergente. En effet, en posant r := a/b, on voit que la série est équivalente à $\sum r^n 2^{\sqrt{n}}$ et l'on conclut au moyen de la règle de Cauchy.

Solution de l'exercice 12 En écrivant le développement limité de la fonction $t \mapsto \ln(\cos t)$, on voit que

$$u_n \sim \frac{-1}{2^{2n+1}}$$
 lorsque $n \to \infty$,

et la convergence s'obtient en s'appuyant sur la série géométrique de raison 1/4. D'après la formule rappelée dans l'indication, on a :

$$\ln \sin \left(\frac{1}{2^{n-1}}\right) = \ln 2 + \ln \left(\sin \left(\frac{1}{2^n}\right)\right) + u_n.$$

On en déduit que

$$\sum_{k=0}^{n} u_k = u_0 + \sum_{k=1}^{n} u_k$$

$$= \ln(\cos 1) + \sum_{k=1}^{n} \left[\ln \sin \left(\frac{1}{2^{n-1}} \right) - \ln \left(\sin \left(\frac{1}{2^n} \right) \right) - \ln 2 \right]$$

$$= \ln(\cos 1) + \ln(\sin 1) - \ln \left(\sin \left(\frac{1}{2^n} \right) \right) - n \ln 2$$

$$= \ln(\cos 1 \sin 1) - \ln \left(2^n \sin \left(\frac{1}{2^n} \right) \right)$$

$$= \ln \left(\frac{\sin 2}{2} \right) - \ln \left(2^n \sin \left(\frac{1}{2^n} \right) \right).$$

En utilisant les développements limités en zéro des fonctions $t \mapsto \sin t$ et $\varepsilon \mapsto \ln(1-\varepsilon)$, on voit que $\ln(2^n \sin(2^{-n}))$ tend vers zéro lorsque $n \to \infty$, de sorte que

$$\sum_{k=0}^{\infty} u_k = \lim_{n \to \infty} \sum_{k=0}^{n} u_k = \ln\left(\frac{\sin 2}{2}\right).$$