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Abstract. We study Lipschitz contraction properties of general Markov kernels seen as
operators on spaces of probability measures equipped with entropy-like “distances”. Uni-
versal quantitative bounds on the associated ergodic constants are deduced from Dobrushin’s
ergodic coefficient. Strong contraction properties in Orlicz spaces for relative densities are
proved under more restrictive mixing assumptions. We also describe contraction bounds in
the entropy sense around arbitrary probability measures by introducing a suitable Dirichlet
form and the corresponding modified logarithmic Sobolev constants. The interest in these
bounds is illustrated on the example of inhomogeneous Gaussian chains. In particular, the
existence of an invariant measure is not required in general.

1. Introduction and results

The purpose of this paper is to study general properties of contractions of Markov
kernels without assumptions on the existence of an invariant probability measure.
Our main motivation for this investigation comes from nonlinear filtering(cf [6]),
where one would like to show that the system is forgetting its initialization (espe-
cially when the latter is not the true one) without nevertheless converging in large
times to an invariant distribution.Actually, an invariant measure may not even exist,
such as in noncompact settings (for annealed results) or due the time-inhomogene-
ity of the underlying signal (from the quenched point of view). The results presented
here may also be used to study contraction properties of Feynman-Kac semigroups
[7] or even the speed of convergence in the central limit theorem [13] These appli-
cations are however not developed here, and we actually only concentrate on the
“abstract” aspects and results.

Start with a measurable space (S,S) and denote by M (respectively P , M+
and M0) the set of associated signed bounded measures (resp.probability measures,
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nonnegative bounded measures and elements of M whose total mass is equal to
0). These sets are naturally endowed with the total variation metric ‖·‖. However,
one may consider other ways to measure the “distance” between, say, elements of
M+. Let for example � : R

2+ → R � {+∞} be a convex function satisfying
�(1, 1) = 0 and homogeneous in the sense that

∀ a, x, y ∈ R+, �(ax, ay) = a�(x, y).

Then for any µ, ν ∈ M+, we may consider the so-called �-relative entropy
between µ and ν defined by

H�(µ, ν) =
∫
�

(
dµ

dλ
,
dν

dλ

)
dλ (1)

where λ stands for any measure in M+ such that µ � λ and ν � λ. As is classical
and easy to see, due to the homogeneity property of �, the above definition does
not depend on the choice of λ. This definition generalizes the classical choice of
�(x, y) = x ln(x/y) giving rise to the usual relative entropy (see below). To see
that (1) is well-defined, let (b1, b2) ∈ R

2 be a subderivative of � at (1, 1), so that

∀ (x, y) ∈ R
2
+, �(x, y) = �(x, y)− b1(x − 1)− b2(y − 1) ≥ 0.

One thus sees that the integral in (1) is always well-defined with values in R�{+∞}
since it can be written as

H�(µ, ν) =
∫
�

(
dµ

dλ
,
dν

dλ

)
dλ+ b1(µ(S)− 1)+ b2(ν(S)− 1).

(In particular, H� is nonnegative on P2 and would even be positive outside the
diagonal if � were assumed to be strictly convex).

Consider now Markov kernelK on (S,S), i.e. a map S×S → [0, 1] satisfying
• ∀ A ∈ S, S 	 x 
→ K(x,A) is measurable
• ∀ x ∈ S, S 	 A 
→ K(x,A) is a probability measure.

The kernel K may also be seen as a left linear transformation on M, via the
formula

∀ µ ∈ M, ∀ A ∈ S, (µK)(A) =
∫
K(x,A)µ(dx).

Note furthermore that the subsets P , M+ and M0 are left invariant by this mapping.
Our main objective in this work will be to investigate, for a given kernelK , the

contraction properties of the map P 	 µ 
→ µK ∈ P with respect to the�-relative
entropy H�. (It should be emphasized that, in practice, it is often more rewarding
to look at the iterated kernel Kn, for some n ≥ 2.) To this task, define, for a fixed
element ν in P , α(�,K, ν) to be the best constant α such that for all µ ∈ P ,

H�(µK, νK) ≤ (1 − α)H�(µ, ν).
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Therefore, 1 − α(�,K, ν) can be seen as a “moving” coefficient of contraction
around ν for K relative to H�. Our first result indicates that Dobrushin’s ergodic
coefficient

a(K) = 1 − 1

2
sup
x,y∈S

‖K(x, ·)−K(y, ·)‖ ≥ 0 (2)

is a universal lower bound for α(�,K, ν).

Proposition 1.1. For �, K and ν as before,

α(�,K, ν) ≥ a(K).

In particular, α(�,K, ν) ≥ 0, which means that K is at least contractive:

∀ µ, ν ∈ P, H�(µK, νK) ≤ H�(µ, ν).

These lower bounds were first obtained by Cohen, Iwasa, Răuţu, Ruskai, Sen-
eta and Zbăganu [4] in the case of a finite state space, from which the general case
actually follows. (See also [17], where Zaharopol and Zbăganu present another
extension of a key inequality involving Dobrushin’s ergodic coefficient to study
stability properties of L

1-operators. These authors do not discuss however Lips-
chitz-type contraction inequalities.) With respect to the matrix-algebraic (and rather
difficult to read) argument of [4], our proof, presented here in Section 3, is mea-
sure-theoretic, and actually easier and much more general in both the hypotheses
and conclusions.

Dobrushin’s coefficient thus appears through Proposition 1.1 as a very coarse
ergodic constant and it is a strong hypothesis to ask for its positivity. One of the
simplest way for bounding it away from 0 is to resort to the even more restrictive
ultra-mixing condition

(H) For any x, y ∈ S, K(x, ·) ∼ K(y, ·) and there exists ε > 0 such that

∀ x, y ∈ S dK(x, ·)
dK(y, ·) ≥ ε K(y, ·)−a.s.

This hypothesis is well-known to imply that a(K) ≥ ε ([9]). Our second objective
in this work will actually be to describe this result (and more general ones) as a
special occurrence of contraction properties for relative densities in Orlicz spaces
valid under (H). More precisely, let ψ : R+ → R be a Young function (ψ(0) = 0,
increasing and convex). For ν ∈ P , denote by L

ψ(ν) the associated Orlicz space
(cf [11] as a general reference), that is the set of measurable functions f : S → R

for which there exists a > 0 such that
∫
ψ(f/a) dν < +∞. Equipped with the

norm

‖f ‖Lψ(ν) = inf

{
a > 0 :

∫
ψ(f/a) dν ≤ 1

}
,

L
ψ(ν) is a Banach space.
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Proposition 1.2. Let K be a Markov kernel on (S,S) and let µ, ν ∈ P be such
that µ � ν and dµ/dν ∈ L

ψ(ν). Then µK � νK and dµK/dνK ∈ L
ψ(νK).

Furthermore, if (H) is satisfied, we have
∥∥∥∥dµKdνK

− 1

∥∥∥∥
Lψ(νK)

≤ (1 − ε)

∥∥∥∥dµdν − 1

∥∥∥∥
Lψ(ν)

(while the inequality with ε = 0 always holds).

The proof of Proposition 1.2 is presented in Section 4. As we will see, the case
ψ(·) = |·| just amounts to the bound a(K) ≥ ε.

In the same spirit, let us mention that if we take � = �0 in Proposition 1.1,
where

∀ (x, y) ∈ R
2
+, �0(x, y) = |x − y| (3)

then we may show that

a(K) = inf
ν∈P

α(�0,K, ν). (4)

Our final task in this work will be to look more closely at two other interesting
choices of �, namely

∀ x, y ∈ R+,
�1(x, y) = (x − y)(x/y − 1)
�2(x, y) = x ln(x/y)

(5)

(with the usual convention 0 ·∞ = 0 adopted throughout the paper). These choices
are indeed associated to the important notions of relative L

2-norm and relative en-
tropy. In particular, as a main result, we will produce lower bounds on α(�1,K, ν)

and α(�2,K, ν) respectively in terms of spectral gaps and modified Sobolev log-
arithmic constants. These results extend well-known ones in the case where ν is
assumed to be invariant, cf [10]). It is worthwhile emphasizing that the usual loga-
rithmic Sobolev constant is of no use in general to describe α(�2,K, ν) and this is
why we emphasize here modified Sobolev logarithmic constants. We postpone until
Section 5 the details about the relevant underlying Dirichlet forms, that involve a
number of operators described in next preliminary section. In the last part finally, a
Gaussian example is discussed showing the advantage in this setting of the modified
logarithmic Sobolev constant with respect to the traditional one. (See for instance
[8] as a general reference or [12] for the corresponding considerations on entropy
dissipation in the case of an invariant probability measure ν). We underline through
this example the gain one can obtain not working with an invariant measure (even
if one exists), emphasizing thus the importance of the Lipschitz point of view.

2. A few reminders

In this section, we recall some useful facts about total variation and entropy dis-
tances, and general Markov operator theory. General references for this section are
[9], [14].
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Let us first come back to the definition of �-entropy. Recall the homogeneous
convex function � : R

2+ → R � {+∞} with �(1, 1) = 0. Denote by φ : R+ →
R � {+∞} the convex function φ(x) = �(x, 1), x ∈ R+. By the homogeneity
hypothesis,� is almost determined by φ, in fact only the values�(x, 0) for x > 0
(or equivalently just �(1, 0)), are missing. In most applications, the natural con-
vention is that�(1, 0) = +∞. This somewhat innocent looking assumption admits
interesting consequences.

Lemma 2.1. Assume that �(1, 0) = +∞. Then,

∀ µ, ν ∈ M+, H�(µ, ν) =
{∫

φ
(
dµ
dν

)
dν if µ � ν

+∞ otherwise.

The right-hand side in this lemma is sometimes called φ-divergence in the sense
of Csiszár [5].

Proof. Let µ, ν ∈ M+ be given and denote by µ = µ1 + µ2 the Lebesgue
decomposition of µ with respect to ν, that is µ1 � ν and µ2 ⊥ ν. Consider A ∈ S
such that ν(Ac) = 0 = µ2(A). To compute H�(µ, ν), choose λ = ν + µ2 to get

H�(µ, ν)=
∫
A

�

(
dµ1

dν
, 1

)
dν +

∫
Ac
�(1, 0) dµ2 = �(µ1, ν)+�(1, 0)µ2(S).

In particular, if µ2(S) > 0 we deduce that H�(µ, ν) = +∞. Otherwise, choosing
λ = ν we get

H�(µ, ν) =
∫
φ

(
dµ

dν

)
dν.

The lemma is established. ��
Note that conversely, if φ : R+ → R � {+∞} is a given convex function,

then l0 = limt→+∞ φ(t)/t exists in R � {+∞}. Then, for any l ∈ [l0,+∞], the
function

∀ (x, y) ∈ R
2
+, �(x, y) =

{
yφ(x/y) if y > 0
lx if y = 0

(6)

is convex. In what follows, we will always take l = l0.
Here are a few examples of classical �-entropies arising in the literature and

which illustrate our work. For the cases described in (5), we obtain respectively,
the L

2-relative norm

∀ µ, ν ∈ P, H�1(µ, ν) =
{∫ (

dµ
dν

− 1
)2
dν if µ � ν

+∞ otherwise

and the usual (Boltzmann-Shannon-Kullback)-entropy

∀ µ, ν ∈ P, H�2(µ, ν) = Ent(µ|ν) =
{∫

ln
(
dµ
dν

)
dµ if µ � ν

+∞ otherwise.
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These examples can be generalized in two directions: the Havrda-Charvat entropy
of order p > 1 corresponds to the function φ : R+ 	 t 
→ 1

p−1 (t
p − 1), i.e.

∀ µ � ν, H�(µ, ν) = Cp(µ|ν) = 1

p − 1

[∫ (
dµ

dν

)p
dν − 1

]

(which is converging to Ent(µ|ν) as p goes to 1+). For p ≥ 1, the L
p-relative

norm is associated to φ : R+ 	 t 
→ |t − 1|p, i.e.

∀ µ � ν, H�(µ, ν) =
∥∥∥∥dµdν − 1

∥∥∥∥
p

Lp(ν)

=
∫ ∣∣∣∣dµdν − 1

∣∣∣∣
p

dν

(the case p = 1 corresponding to�0). Observe that for φ(t) = 1
p−1 (t

1−p−1)with
p > 1 (resp. φ(t) = ln (1/t)), we also have the identities H�(µ, ν) = Cp(ν|µ)
(resp. H�(µ, ν) = Ent(ν|µ)) for µ � ν).

The two preceding examples are occurrences where �(1, 0) = +∞ is not sat-
isfied. The Hellinger integrals of order θ ∈ (0, 1) are some other instances. They
arise with the choice of φ(t) = t − tθ , t ∈ R+. Hence, for any µ, ν ∈ P and λ
such that µ � λ, ν � λ,

H�(µ, ν)11 −
∫ (

dµ

dλ

)θ (
dν

dλ

)1−θ
dλ.

(Alternatively,H�(µ, ν) = 1−∫ (
dµ
dν

)θ
dν ifµ � ν). In the special case θ = 1/2,

this definition coincides with the classical Kakutani-Hellinger integral.
The most important example of interest where �(1, 0) �= +∞ is probably

� = �0 defined in (3). In this case, for any µ, ν ∈ M+,

H�0(µ, ν) = ‖µ− ν‖ = sup
f∈Bb, ‖f ‖∞=1

(µ− ν)(f )

where Bb is the set of bounded measurable functions on (S,S) endowed with the
supremum norm ‖·‖∞. This is a very basic result of measure theory which can be
shown via the Hahn-Jordan decomposition of µ − ν ∈ M in terms of nonnega-
tive measures. For this particular choice of � = �0, Proposition 1.1 immediately
follows from the seminal paper [9] of Dobrushin who proved that for any Markov
kernel K ,

1 − a(K) = sup
x �=y∈S

∥∥δxK − δyK
∥∥∥∥δx − δy

∥∥ = sup
µ�=ν∈P

‖µK − νK‖
‖µ− ν‖ . (7)

The same argument also proves (4). To deduce that a(K) ≥ ε from the Proposition
1.2 for ϕ = |·| is quite similar.

Next we present some further operator interpretations of a Markov kernel K .
Writing

∀ x ∈ S, K(f )(x) =
∫
f (y)K(x, dy)
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the kernel K can be seen as a right-acting operator on f ∈ Bb or B+ (the set of
R̄+-valued measurable functions defined on (S,S)). Given a probability measure
ν ∈ P , for f ∈ Bb and 1 ≤ p < ∞, Hölder’s inequality shows that

ν((Kf )p) ≤ ν(K(f p)) = (νK)(f p).

Hence K can also be extended as a linear map from L
p(νK) into L

p(ν). The dual
operator K∗

ν from L
q(ν) to L

q(νK), where q = p/(p − 1) ∈ (1,+∞) is the
conjugate exponent of 1 < p < +∞, satisfies by definition

∀ f ∈ L
q(ν), ∀ g ∈ L

p(νK), (νK)(gK∗
ν (f )) = ν(K(g)f ).

Since the dual of L
∞(ν) cannot be identified with L

1(ν), this approach does not
allow however for the construction ofK∗

ν on the latter space. We have to work it out
directly as is classical in the field of Markov kernels (see for instance [14] and its
bibliography). First note that if µ ∈ M satisfies µ � ν, then µK � νK . Indeed,
if A ∈ S is such that (νK)(A) = 0, the function K(�A) is ν-negligible, hence
µ-negligible and finally (µK)(A) = 0. Set then

∀ f ∈ L
1(ν), K∗

ν (f ) = d(f ν)K

dνK

so that we still have

∀ f ∈ L
1(ν), ∀ g ∈ L

∞(νK), (νK)(gK∗
ν (f )) = ν(K(g)f ). (8)

Notice that the dual operators K∗
ν on L

p(ν), for 1 < p < +∞, can be seen as the
restrictions to these sets of the ones on L

1(ν).
Actually,K∗

ν is almost a Markov kernel. Recall that for any two fixed probability
measuresµ, ν, a linear operatorR from L

1(ν) into L
1(µ) is said to be (generalized)

Markovian if

• R(f ) ≥ 0, µ-a.s. for any f ∈ L
1(ν) such that f ≥ 0 ν-a.s.

• R(�) = � µ-a.s.

Lemma 2.2. The operatorsK∗
ν : L

1(ν) → L
1(νK) andKK∗

ν : L
1(ν) → L

1(ν)

are Markovian.

Proof. In view of (8), (νK)(gK∗
ν (f )) ≥ 0 for any nonnegative f ∈ L

1(ν) and any
nonnegative g ∈ L

∞(νK). Furthermore, for any g ∈ L
∞(νK),

(νK)(gK∗
ν (�)) = ν(K(g)) = (νK)(g)

thus implying that K∗
ν (�) = �, νK-a.s. Finally, since K : L

1(νK) → L
1(ν) is

Markovian, the same remains true by composition for KK∗
ν : L

1(ν) → L
1(ν). ��

As a consequence of the preceding lemma, we are allowed to use Jensen’s
inequality for K∗

ν . Hence, for any function f ∈ B+ and any convex function ϕ :
R+ → R,K∗

ν (ϕ(f )) ≥ ϕ(K∗
ν (f )) νK a.s.Another interesting feature is that ν is in-

variant with respect toKK∗
ν , meaning that for all f ∈ L

1(ν), ν(KK∗
ν (f )) = ν(f ).

This is indeed an immediate consequence of the fact that

ν(KK∗
ν (f )) = (νK)(�K∗

ν (f )) = ν(fK(�)) = ν(f ).
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The probability measure ν is even reversible for the Markov operator KK∗
ν in the

sense that

∀ f, g ∈ L
2(ν), ν(fKK∗

ν (g)) = ν(gKK∗
ν (f )).

Indeed, we have in the same way

ν[fKK∗
ν (g)] = ((f ν)K)[K∗

ν (g)]

= (K∗
ν (f )(νK))[K

∗
ν (g)]

= (νK)[K∗
ν (f )K

∗
ν (g)]

= ν[gKK∗
ν (f )].

It follows that the Dirichlet form given by

∀ f ∈ L
2(ν), Eν,KK∗

ν
(f, f ) = ν[f (Id −KK∗

ν )(f )] (9)

is symmetric. As announced in the introduction, this observation will be our start-
ing point for defining spectral gaps and modified logarithmic Sobolev constants
with respect to this Dirichlet form (see Section 5). Note that if ν is assumed to be
invariant forK (i.e. νK = ν), thenK∗

ν coincides on L
2(ν)with the adjoint ofK on

L
2(ν). We recover thus in this case the Dirichlet form considered in [10] and [12].

To conclude this preliminary section, let us briefly describe K∗
ν in cases where

some absolute continuity assumption is available. More precisely, assume that

∀ x ∈ S, K(x, ·) � νK.

As a consequence, the probability measure ν(dx)K(x, dy) on S × S is absolutely
continuous with respect to ν(dx)νK(dy). By a slight abuse of notation, denote its
density by

dK(x, ·)
dνK

(y).

Expanding the right-hand side of (8) shows that

K∗
ν (x, dy) = dK(y, ·)

dνK
(x)ν(dy).

In the same way, one can check that

KK∗
ν (x, dy) = G(x, y)ν(dy)

with, ν ⊗ ν-a.s. in (x, y) ∈ S × S,

G(x, y) =
∫
dK(x, ·)
dνK

(z)
dK(y, ·)
dνK

(z) νK(dz).
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3. On Dobrushin’s ergodic coefficient

In this section, we present the proof of Proposition 1.1. According to (7), and via
an obvious homogeneity property, we already know that for any Markov kernelK ,

∀ η ∈ M0, ‖ηK‖ ≤ (1 − a(K)) ‖η‖ .

Our first task will be to extend this inequality to the whole space M.

Lemma 3.1. For any η ∈ M,

‖ηK‖ ≤ (1 − a(K)) ‖η‖ + a(K) |η(S)| .
Proof. Again by homogeneity, it is sufficient to check this inequality in the case
η(S) ≥ 0. Next we note that if η ∈ M+, then ‖η‖ = η(S) and ‖ηK‖ = |ηK(S)| =
η(S). Hence the lemma also holds in this case.

In the general case, let η = η+ − η− be the Hahn-Jordan decomposition of η.
We can also write η = η1 + η2, with

η1 = η+(S)− η−(S)
η+(S)

η+ ∈ M+, η2 = η−(S)
η+(S)

η+ − η− ∈ M0.

Therefore,

‖ηK‖ ≤ ‖η1K‖ + ‖η2K‖
≤ (1 − a(K))(‖η1‖ + ‖η2‖)+ a(K)(|η1(S)| + |η2(S)|).

Since |η1(S)| + |η2(S)| = η1(S) = η(S) and

‖η‖ = η+(S)+ η−(S) = η+(S)− η−(S)
η+(S)

η+(S)+ η−(S)
η+(S)

η+(S)

+η−(S) = ‖η1‖ + ‖η2‖ ,

the conclusion follows. ��
Remark 3.2. Recalling that for any signed measure η ∈ M,

2η+(S) ∧ η−(S) = ‖η‖tv − |η(S)|

and taking into account that for any Markov kernel K , we have ηK(S) = η(S),
Lemma 3.1 may also be written as

(ηK)+(S) ∧ (ηK)−(S) ≤ (1 − a(K)) (η+(S) ∧ η−(S)) .

In particular, if a(K)> 0, using that both sequences ((ηKn)+(S))n≥0 and
((ηKn)−(S))n≥0 are nonincreasing, either limn→∞(ηKn)+(S) = 0 or
limn→∞(ηKn)−(S)=0, depending upon the sign of η(S). If η(S) = 0, both are
converging to zero, hence limn→+∞ ‖ηKn‖ = 0. There is thus a loss of the initial
condition η+ or η−, which was the original result of Dobrushin [9].



404 P. Del Moral et al.

The next result is essentially Lemma 3.3 of J.E. Cohen, Y. Iwasa, G. Răuţu,
M.B. Ruskai, E. Seneta and G. Zbăganu [4], except that there the measures are
assumed to have compact support.

Lemma 3.3. Letm1, m2 be two bounded measures on the Borel sets of R admitting
a first moment and such that

• m1 and m2 are acting in the same manner on affine maps:

m1(R) = m2(R) and
∫
t m1(dt) =

∫
t m2(dt).

• For any s ∈ R, ∫
|t − s| m1(dt) ≤

∫
|t − s| m2(dt).

Then for any convex function ϕ : R → R, m1(ϕ) ≤ m2(ϕ) (the value +∞ being
allowed).

Proof. The main modification with respect to the approach of [4] is that we replace
uniform convergence by monotone convergence. Let ϕ be a given convex func-
tion on R. One can find two sequences (xi)i∈Z∗ and (ki)i∈Z∗ of nonnegative real
numbers such that if we set for n ≥ 1,

∀ t ∈ R, ϕn(t) = ϕ(0)+ ϕ′
r(0)t +

∑
0<i≤n

ki(t − xi)+ +
∑

−n≤i<0

ki(t + xi)−

where ϕ′
r is the right derivative of ϕ and (·)+ and (·)− are respectively the nonneg-

ative and nonpositive parts, then (ϕn)n≥1 is an increasing sequence converging to
ϕ. Indeed,

∀ t ∈ R, ϕ(t) = ϕ(0)+ ϕ′
r(0)t +

∫ t

0
ϕ′

r(s)− ϕ′
r(0) ds.

Since R 	 t 
→ ϕ′
r(t) − ϕ′

r(0) is nondecreasing and equal to 0 at t = 0, it suffic-
es to approximate from below this function by nondecreasing step functions (for
example constant on appropriate dyadic intervals).

Next coming back to m1 and m2, for any i ≥ 1,∫
ki(t − xi)+m1(dt) = 1

2

∫
ki |t − xi | m1(dt)+ 1

2

∫
ki(t − xi)m1(dt)

≤ 1

2

∫
ki |t − xi | m2(dt)+ 1

2

∫
ki(t − xi)m2(dt)

=
∫
ki(t − xi)+m2(dt).

Similarly for the nonpositive parts,∫
k−i (t + x−i )−m1(dt) ≤

∫
k−i (t + x−i )−m2(dt).
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As a consequence, for any n ≥ 1,∫
ϕn(t)m1(dt) ≤

∫
ϕn(t)m2(dt)

and letting n grow to infinity, we conclude by the monotone convergence theorem.
The lemma is established. ��

In its present form, the preceding lemma would only imply Proposition 1.1 for
probability measures µ absolutely continuous with respect to ν. In order to reach
the full conclusion, we need to slightly modify it.

Lemma 3.4. Let m1, m2 be two bounded measures on the quadrant (R2+,R⊗2
+ )

admitting a first moment and such that

• m1 and m2 are acting in the same manner on affine mappings:

m1(R
2
+) = m2(R

2
+),

∫
s m1(ds, dt) =

∫
s m2(ds, dt)

and
∫
t m1(ds, dt) =

∫
t m2(ds, dt).

• For any a, b ∈ R,∫
|as − bt | m1(ds, dt) ≤

∫
|as − bt | m2(ds, dt).

Then for any homogeneous convex function � on R
2+, m1(�) ≤ m2(�) (the value

+∞ being again allowed).

Proof. We use the representation (6) of� by a convex function φ together with the
approximation procedure described in Lemma 3.3 for φ. Then Lemma 3.4 holds as
soon as for all a, b ∈ R,∫

(as − bt)+ m1(ds, dt) ≤
∫
(as − bt)+ m2(ds, dt) (10)

∫
�{t=0}s m1(ds, dt) ≤

∫
�{t=0}s m2(ds, dt)

which are immediate consequences of the hypotheses. (Note that the last inequality
is needed in case l > l0. It can actually be deduced from the first condition by
letting there b going to infinity with a = 1.) ��

Proposition 1.1 now follows quite easily from the preceding. Let µ, ν ∈ P be
given and let λ ∈ P be such thatµ � λ, ν � λ. We make use of Lemma 3.4 form1
and m2 on (R2+,R⊗2

+ ) acting on bounded measurable functions by ϕ : R
2+ → R

by

m1(ϕ) =
∫
ϕ

(
dµK

dλK
,
dνK

dλK

)
dλK,

m2(ϕ) = (1 − a(K))

∫
ϕ

(
dµ

dλ
,
dµ

dλ

)
dλ+ a(K)ϕ(1, 1).
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For these measures, the first condition of Lemma 3.4 is immediate. The second
hypothesis amounts to check that for all a, b ∈ R,
∫ ∣∣∣∣a dµKdλK

− b
dνK

dλK

∣∣∣∣ dλK ≤ (1 − a(K))

∫ ∣∣∣∣a dµdλ − b
dν

dλ

∣∣∣∣ dν + a(K) |a − b| .

In terms of the total variation distance,

‖(aµ− bν)K‖ ≤ (1 − a(K))‖aµ− bν‖ + a(K) |a − b| .
But this clear from Lemma 3.1 since (aµ−bν)(S) = a−b. Therefore, Proposition
1.1 is proved.

4. On Orlicz norms

The spirit of Proposition 1.2 is quite similar to that of Proposition 1.1. For example,
ifψ(t) = tp, t ≥ 0, for a fixedp ≥ 1, Proposition 1.1 indicates that for any Markov
kernel K and any two probability measures µ � ν,

∥∥∥∥dµKdνK
− 1

∥∥∥∥
Lp(νK)

≤ (1 − α(�,K, ν))
1
p

∥∥∥∥dµdν − 1

∥∥∥∥
Lp(ν)

≤ (1 − a(K))
1
p

∥∥∥∥dµdν − 1

∥∥∥∥
Lp(ν)

where �(x, y) = (x/y1−1/p − y1/p)p, (x, y) ∈ R
2+. Since as we have seen (H)

implies a(K) ≥ ε, we already have that
∥∥∥∥dµKdνK

− 1

∥∥∥∥
Lp(νK)

≤ (1 − ε)
1
p

∥∥∥∥dµdν − 1

∥∥∥∥
Lp(ν)

.

This is just a little bit less precise than what is expressed by Proposition 1.2. The
proof of Proposition 1.2 we will present is however completely different and in
some respect aspects more direct.

More generally, let us also mention that qualitatively speaking, at least under
the doubling condition for the Orlicz function ψ (i.e. there exists a constant k > 1
such that for all x ≥ 0 large enough, ψ(2x) ≤ kψ(x)), the convergences

lim
n→∞H�(µK

n, νKn) = 0

where � is the smallest convex function on R
2+ upper bounding R+ × R

∗+ 	
(x, y) 
→ yψ(x/y − 1), and

lim
n→∞

∥∥∥∥dµK
n

dνKn
− 1

∥∥∥∥
Lψ(νKn)

= 0

are equivalent (see for instance the proof of Theorem 9.4 p. 83 of [11]). Thus∑
n≥0 α(�,K, νK

n) = +∞, and in particular a(K) > 0 is sufficient to insure this
behavior. However, this type of argument does not produce any kind of quantitative
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exponential bound for this convergence. On the other hand, quantitative bounds
will require the more restrictive hypothesis (H).

We start by rewriting hypothesis (H) in terms of the dual operatorsK∗
ν . Below,

ε will always refer to the strictly positive constant of (H).

Lemma 4.1. Condition (H) is equivalent to

∀ ν ∈ P, K∗
ν ≥ ε ν νK − a.s.

Proof. We aim to show that (H) is equivalent to

∀ f ∈ L
1
+(ν), ∀ g ∈ L

∞
+ (νK), (νK)[(K∗

ν (f )− εν(f ))g] ≥ 0

(where the + in subscripts indicate that we are only considering nonnegative func-
tions). Now, by definition of K∗

ν ,

(νK)[K∗
ν (f − εν(f ))g] = ν[K(g)(f − εν(f ))] = ν[f (K(g)− εν(Kg))].

In other words, this is equivalent to saying that f ∈ L
1+(ν) and g ∈ L

∞+ (νK),

∀ A ∈ S, K(A) ≥ ε(νK)(A) ν-a.s. (11)

To see that 11 implies (H), take ν = ηδx+ (1−η)δy where 0 < η < 1 and x, y ∈ S
to get that, for any A ∈ S,

K(x,A) ≥ ε(ηK(x,A)+ (1 − η)K(y,A))

that is

K(x,A) ≥ ε(1 − η)

1 − εη
K(y,A).

Condition (H) follows by letting η tend to 0+. Conversely, (H) indicates that for
any x, y ∈ S and A ∈ S, K(x,A) ≥ εK(y,A). Integrating with respect to ν(dy),
we end up with (11), which finally has to be satisfied for all x ∈ S and not only
ν(dx)-a.s. Lemma 4.1 is thus established. ��

The preceding characterization leads to the following result, which is the main
step needed for the proof of Proposition 1.2.

Proposition 4.2. Under assumption (H), for any probability measure ν ∈ P , any
Markov kernel K , any convex function ϕ : R → R and any function f ∈ L

1(ν),
∫
ϕ(K∗

ν [f − ν(f )]) dνK ≤
∫
ϕ((1 − ε)(f − ν(f ))) dν.

Proof. Let ν, K and ϕ be as given above. Due to Lemma 4.1, the operator R =
(1 − ε)−1(K∗

ν − εν) is Markovian. Now, ν is again KR-invariant since

νKR = νK
K∗
ν − εν

1 − ε
= νKK∗

ν

1 − ε
− εν

1 − ε
= ν

1 − ε
− εν

1 − ε
= ν.
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By convexity, for any x, y ∈ S and f ∈ L
1(ν)

ϕ((1 − ε)(f (x)− ν(f )))

≥ ϕ(K∗
ν (f − ν(f ))(y))+ ϕ′

d(K
∗
ν (f − ν(f ))(y))

× [(1 − ε)(f (x)− ν(f ))−K∗
ν (f − ν(f ))(y)]

= ϕ(K∗
ν (f − ν(f ))(y))+ (1 − ε)ϕ′

d(K
∗
ν (f − ν(f ))(y))

× [(f (x)− ν(f ))− R(f − ν(f ))(y)].

(Actually, this is only satisfied ν(dx)-a.s. and νK(dy)-a.s. since f (x) andK∗
ν (f −

ν(f ))(y) are merely defined this way). Integrating with respect toR(y, dx) (which
rigorously means letting act R in that way), we get

R[ϕ((1 − ε)(f (·)− ν(f )))](y) ≥ ϕ(K∗
ν (f − ν(f ))(y)).

The conclusion follows by integrating one more time with respect to (νK)(dy):

∫
ϕ((1 − ε)(f − ν(f ))) dν =

∫
R[ϕ((1 − ε)(f − ν(f )))] d(νK)

≥
∫
ϕ(K∗

ν (f − ν(f ))(y)) νK(dy).

The proof is complete. ��

We are now ready to prove Proposition 1.2 that follows rather easily from the
preceding. Letψ be theYoung function in Proposition 1.2 and let µ, ν be such that
dµ/dν ∈ L

ψ(ν). Apply the previous proposition to f = a−1dµ/dν for a > 0 (so
that K∗

ν (f − ν(f )) = a−1((dµK)/(dνK) − 1)). The result immediately follows
from the definition of the norm ‖·‖Lψ(ν).

It is worthwhile mentioning that Proposition 1.2 actually still holds even when
‖dµ/dν‖Lψ(ν) = +∞. This is clear when ε < 1. Whenever ε = 1, due to our con-
ventions, we have to show that (dµK)/(dνK) = 1 (in L

ψ(νK)), i.e. µK = νK .
Since K∗

ν = ν for any ν ∈ P , by duality as K = νK . That means in fact that K is
a probability measure, say m ∈ P , and thus for any µ, ν ∈ P , µK = m = νK .
Finally, the above computations are still valid when ε = 0 for which we just have
the simple contraction property.

5. Modified logarithmic Sobolev constant

In this section, we investigate the situation corresponding to �1 and �2 of (5)
to obtain precise bounds on α(�1,K, ν) and α(�2,K, ν) in terms of a natural
Dirichlet form, which generalize and extend well-known estimates in the invariant
situation.

We start with the simpler function �1 and recall a result first due to Fill [10]
in the special case where the probability measure ν is assumed to be invariant for
the Markov kernel K . Note that for any µ, ν ∈ P , H�1(µ, ν) is finite if and only
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if µ � ν and dµ/dν ∈ L
2(ν). We always assume these conditions below. Then

denoting by f the function dµ/dν − �,

∫ (
dµK

dνK
− 1

)2

dνK =
∫ (

K∗
ν f

)2
dνK

=
∫
fKK∗

ν (f ) dν

= ν(f 2)− Eν,KK∗
ν
(f, f )

where the Dirichlet form Eν,KK∗
ν

was defined in (9). Since ν(f ) = 0 and ν(f 2) =
H�1(µ, ν), it easily follows that

α(�1,K, ν) = λ(ν,KK∗
ν )

where

λ(ν,KK∗
ν ) = inf

f∈L2(ν)\Vect(�)

Eν,KK∗
ν
(f, f )

ν((f − ν(f ))2)

is the spectral gap ofKK∗
ν in L

2(ν). As the constant function � is an eigenfunction
associated to the eigenvalue 0 of the self-adjoint operator Id −KK∗

ν in the Hilbert
space L

2(ν), the quantity λ(ν,KK∗
ν ) can be viewed as the bottom of the spectrum

of this operator restricted to the orthogonal complement of Vect(�) (some authors
prefer to speak of spectral gap only if the above quantity is positive, which is not
necessarily true under our hypotheses here.)

Next we turn to the function �2. In quite a similar way, we define respectively
the logarithmic Sobolev constant

l̃(ν,KK∗
ν ) = inf

f∈L�(ν)\Vect(�)

Eν,KK∗
ν
(f, f )

Ent(f 2, ν)

and modified logarithmic Sobolev constant

l(ν,KK∗
ν ) = inf

f∈L�(ν)\Vect(�)

Eν,KK∗
ν
(f 2, ln(f 2))

Ent(f 2, ν)
. (12)

Here and in what follows � will always denote a fixed Young function such that
�(x) ∼ x2 ln(x2) for large x ∈ R+ and the entropy of a function f ∈ L

�(ν) is
given by

Ent(f 2, ν) =
∫
f 2 ln(f 2/ν(f 2)) dν.

The modified logarithmic Sobolev constant l(ν,KK∗
ν ) has not been much stud-

ied explicitly for itself in the literature, with the notable exception of a paper by
Wu [16]. Nevertheless it has often be used implicitly (see for instance [8] or [15])
through the bound

l(ν,KK∗
ν ) ≥ l̃(ν,KK∗

ν ). (13)
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This bound basically follows from the convexity inequality

∀ y ≥ 0, ∀ z > 0, ln(z)− ln(y) ≥ 2√
z
(
√
z− √

y)

which implies that for any f ∈ L
�(ν), ν(dx)-a.s.,

|f |(x)(Id −KK∗
ν )[ln(f

2)](x) = |f |(x)KK∗
ν [ln(f 2)(x)− ln(f 2)](x)

≥ |f |(x) 2

|f |(x)KK
∗
ν [|f |(x)− |f |](x)

= 2KK∗
ν [|f |(x)− |f |](x)

= 2(Id −KK∗
ν )[|f |](x)

(at least if |f |(x) > 0). Integrating with respect to |f |(x)ν(dx) shows that

Eν,KK∗
ν
(f 2, ln(f 2)) ≥ 2 Eν,KK∗

ν
(|f | , |f |) ≥ 2 Eν,KK∗

ν
(f, f )

which in turn leads to (13).
Another general fact is that

2λ(ν,KK∗
ν ) ≥ l(ν,KK∗

ν ). (14)

This is proved by applying the definition of the modified logarithmic Sobolev con-
stant to functions of the form f = � + εg with ε → 0. The same argument
shows that if the infimum in (12) can be approximated by a sequence of functions
converging to �, then l(ν,KK∗

ν ) = 2λ(ν,KK∗
ν ).

The logarithmic Sobolev constant is classically used to bound the decay of entro-
py (see e.g. [8]). It might well occur however that the classical logarithmic Sobolev
constant is of no use (equal to 0) while the modified logarithmic Sobolev constant is
strictly positive. The modified logarithmic Sobolev constant may actually be better
suited for this purpose (as will be demonstrated by examples below). The follow-
ing main result namely characterizes the ergodic coefficient α(�2,K, ν) in terms
of the modified logarithmic Sobolev constant l(ν,KK∗

ν ). (By (13), the classical
logarithmic Sobolev constant l̃(ν,KK∗

ν ) only appears as a lower bound, possibly
equal to zero in examples of interest.)

Proposition 5.1. There exists an universal constant 0 < ρ < 1 such that for any
Markov kernel K and any probability measure ν,

ρ l(ν,KK∗
ν ) ≤ α(�2,K, ν) ≤ l(ν,KK∗

ν )

Proof. In order to simplify the exposition, we will work as if the operatorK∗
ν were

given by a Markov kernel K∗
ν (x, dy), x, y ∈ S. This can be insured by taking

appropriate topological assumptions on (S,S). Nevertheless the above proposition
is true without such assumptions, and everything may actually be justified from the
operator point of view. However, to adopt the latter would hide the probabilistic
intuition. This is why we restrict ourselves to this case and leave it to the reader to
rewrite the argument in the operator theory language.
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As a consequence, ν(dx)K(x, dy) = (νK)(dy)K∗
ν (y, dx). This fact is con-

venient to evaluate � = Ent(µ|ν) − Ent(µK|νK). We already know that � ≥ 0
when µ ∈ P is such that µ � ν with

√
f = √

dµ/dν ∈ L
�(ν). We can write

� =
∫
f (x) ln(f (x)) ν(dx)−

∫
K∗
ν [f ](y) ln(K∗

ν [f ](y)) (νK)(dy)

=
∫
f (x) ln(f (x)) ν(dx)−

∫
f (x) ln(K∗

ν [f ](y)) ν(dx)K(x, dy)

=
∫
f (x)(ln(f (x))− ln(K∗

ν [f ](y))) ν(dx)K(x, dy)

=
∫
(νK)(dy)

∫
f (x)(ln(f (x))− ln(K∗

ν [f ](y)))K∗
ν (y, dx).

For y ∈ S fixed, the last integral is the entropy of the nonnegative measure
f (x)K∗

ν (y, dx) with respect to the probability measureK∗
ν (y, dx). To control this

entropy, we apply the general Lemma 5.2 presented at the end of this proof, which
leads to the equality

∫
f (x) ln

(
f (x)

K∗
ν [f ](y)

)
K∗
ν (y, dx)

= 1

2

∫ ∞

0
dt

∫
(ft (x)− ft (z))(ln(ft (x))− ln(ft (z)))K

∗
ν (y, dx)K

∗
ν (y, dz)

where for any t ≥ 0 and x ∈ S, we have ft (x) = e−t f (x) + (1 − e−t ). Thus we
end up with

� = 1

2

∫ ∞

0
dt

∫
(ft (x)− ft (z))(ln(ft (x))− ln(ft (z))) (νK)(dy)

×K∗
ν (y, dx)K

∗
ν (y, dz)

= 1

2

∫ ∞

0
dt

∫
(ft (x)− ft (z))(ln(ft (x))− ln(ft (z))) ν(dx)K(x, dy)K

∗
ν (y, dz)

=
∫ ∞

0
Eν,KK∗

ν
(ft , ln(ft )) dt.

We are therefore in a position to use the definition of l(ν,KK∗
ν ) to get that

� ≥ l(ν,KK∗
ν )

∫ ∞

0
dt

∫
ft ln(ft ) dν = l(ν,KK∗

ν )

∫ ∞

0
dt

×
∫
ft ln(ft )− ft + 1 dν

since
∫
ft dν = 1. We are thus led to introduce the functions
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∀ x, x ≥ 0, ϕ+(x) = (1 + x) ln(1 + x)− x

∀ x, −1 ≤ x ≤ 0, ϕ−(x) = (1 + x) ln(1 + x)− x.

These functions satisfy “doubling property”: there exist a constant 0 < ρ < 1 such
that

∀ x, x ≥ 0, 0 ≤ ϕ+(x) ≤ ρ−1ϕ+(x/2)
∀ x, −1 ≤ x ≤ 0, 0 ≤ ϕ−(x) ≤ ρ−1ϕ−(x/2).

Since ϕ+ is nondecreasing and ϕ− nonincreasing, the preceding “doubling prop-
erty” is still satisfied if in the right-hand side x/2 is replaced by any gx with
1/2 ≤ g ≤ 1. Next we observe that

∫ ∞

0
dt

∫
ft ln(ft )− ft + 1 dν

=
∫ ∞

0
dt

∫
ϕ−((ft − 1)−)+ ϕ+((ft − 1)+) dν

=
∫ ∞

0
dt

∫
ϕ−(exp(−t)(f − 1)−)+ ϕ+(exp(−t)(f − 1)+) dν

≥
∫ ln(2)

0
dt

∫
ϕ−(exp(−t)(f − 1)−)+ ϕ+(exp(−t)(f − 1)+) dν

≥ ρ

∫ ln(2)

0
dt

∫
ϕ−((f − 1)−)+ ϕ+((f − 1)+) dν

= ln(2)ρ
∫
ϕ−((f − 1)−)+ ϕ+((f − 1)+) dν

= ln(2)ρ
∫
f ln(f ) dν.

In summary, we have shown that

Ent(µ|ν)− Ent(µK|νK) ≥ ln(2)ρ l(ν,KK∗
ν )Ent(µ|ν)

from which it easily follows that

α(�2,K, ν) ≥ ln(2)ρ l(ν,KK∗
ν ).

The converse inequality is a simple consequence of Jensen’s inequality. Let f ∈
L
�(ν) \ Vect(�) be given. We would like want minimize the quotient appearing in

the definition (12). To this task we can assume that
∫
f 2 dν = 1. Consider then the

probability measure µ(x) = f 2(x)ν(dx), x ∈ S. We have
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Eν,KK∗
ν
(f 2, ln(f 2))

=
∫
f 2(x)KK∗

ν [ln(f 2(x))− ln(f 2)](x) ν(dx)

=
∫
f 2(x) ln(f 2(x)) ν(dx)−

∫
f 2(x)KK∗

ν [ln(f 2)](x) ν(dx)

≥
∫
f 2(x) ln(f 2(x)) ν(dx)−

∫
f 2(x)K[ln(K∗

ν [f 2])](x) ν(dx)

=
∫
f 2(x) ln(f 2(x)) ν(dx)−

∫
K∗
ν [f 2](y) ln(K∗

ν [f 2](y)) (νK)(dy)

= Ent(µ|ν)− Ent(µK|νK)
≥ α(�2,K, ν)Ent(µ|ν)
= α(�2,K, ν)Ent(f 2, ν)

from which the expected lower bound on l(ν,KK∗
ν ) follows. The proof of Propo-

sition 5.1 is complete. ��
To complete the above proof, we still have to establish the following auxiliary

result that will be obtained via continuous time arguments. This is rather usual in
this context (cf [8]).

Lemma 5.2. Let m, n ∈ P be probability measures such that m � n with
√
f =√

dm/dn ∈ L
�(n). Then

Ent(m|n) = 1

2

∫ ∞

0
dt

∫
(ft (x)− ft (y))(ln(ft (x))− ln(ft (y))) n(dx)n(dy)

where for all t ≥ 0 and for n-a.s. all x ∈ S,

ft (x) = e−t
dm

dn
(x)+ 1 − e−t .

By homogeneity, this equality can also be extended to the case where m is only
assumed to be a non-negative measure, at least if we still have

√
f = √

dm/dn ∈
L
�(n) and if we then adopt the convention Ent(m|n) = Ent(f, n).

Proof. As announced, consider the Markov semigroup (Pt )t≥0 with generator
n− Id. (From an operator point of view, Pt = exp(t (n− Id)) and the corresponding
stochastic process just waits exponential times of parameter 1 before choosing new
positions according to n.) Denote by mt = mPt = e−tm + (1 − e−t )n the image
measure at time t ≥ 0 of the initial measure m. Next we compute the derivative
with respect to time of Ent(mt |n) to obtain

−
∫
ft (Id − n)[ln(ft )] dn = −

∫
ft (x)(ln(ft (x))− ln(ft (y))) n(dx)n(dy)

= −1

2

∫
(ft (x)− ft (y))(ln(ft (x))

− ln(ft (y))) n(dx)n(dy)

where ft = dmt/dn = e−t f + (1 − e−t ). The lemma then follows by integration
since limt→+∞ Ent(mt |n) = 0. ��
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Remarks 5.3. a) Despite the constant ρ, Proposition 5.1 really improves upon the
previous result [12] in that direction expressing that l̃(ν,KK∗

ν ) ≤ α(�2,K, ν) in
the case of an invariant ν. Note also that this relation can be extended to the general
case, following the same type of considerations we used here.

b) Forµ, ν ∈ P such thatµ � ν with
√
f = √

dµ/dν ∈ L
�(ν), the preceding

considerations involve the quantity

Eν,ν(f 2, ln(f 2)) = 1

2

∫
(f 2(x)− f 2(y))(ln(f 2(x))− ln(f 2(y))) ν(dx)ν(dy).

Along with this quantity, we could have introduced a new coefficient associated to
K , namely

l̄(ν,KK∗
ν ) = inf

f∈L�(ν)\Vect(�) : Eν,ν (f 2,ln(f 2))<+∞
Eν,KK∗

ν
(f 2, ln(f 2))

Eν,ν(f 2, ln(f 2))
.

Following the same approach as above (removing actually the doubling property
considerations), we would get l̄(ν,KK∗

ν ) ≥ α(�2,K, ν).. In particular,

l̄(ν,KK∗
ν ) ≤ l(ν,KK∗

ν ). (15)

This may actually be obtained directly from the general inequality Eν,ν(f 2, ln(f 2))

≥ Ent(f 2, ν) for all f ∈ L
�(ν). However, there is no reverse inequality to the

latter at least as soon as ν is not a Dirac mass (consider a function f such that
ν({f = 0} � {f = 1}) = 1 and 0 < ν({f = 0}) < 1. One may nevertheless
wonder for a possible converse inequality to (15).

c) We also observe that one may push the argument of Lemma 5.2 a bit further.
Keeping the same notation, we have seen that

Ent(µ|ν)− Ent(µK|νK)
= 1

2

∫ ∞

0
dt exp(−t)

∫
(f (x)− f (y))(ln(ft (x))− ln(ft (y))) ν(dx)KK

∗
ν (x, dy).

Introduce then the function

∀ x > 0, G(x) =
∫ ∞

0
exp(−t) ln[1 + exp(−t)(x − 1)] dt = x ln(x)− x + 1

x − 1
.

The former right-hand side is equal to

1

2

∫
(f (x)− f (y))(G(f (x))−G(f (y))) ν(dx)KK∗

ν (x, dy) = Eν,KK∗
ν
(f,G(f )).

Therefore, we obtain a “variational characterization” of α(�2,K, ν) as

α(�2,K, ν) = inf
f∈L�(ν)\Vect(�)

Eν,KK∗
ν
(f 2,G(f 2/ν(f 2)))

Ent(f 2, ν)
.

d) Finally, let us return back to hypothesis (H). Using Lemma 4.1, that also
implies that KK∗

ν ≥ εν, we get directly that under (H), λ(ν,KK∗
ν ) ≥ ε and

l̄(ν,KK∗
ν ) ≥ ε. A fortiori l(ν,KK∗

ν ) ≥ ε. However, it was shown in [12] that
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l̃(ν,KK∗
ν ) = 0 as soon as ν is not a finite combination of Dirac masses. This sim-

ple observation already shows the advantage one has to consider l(ν,KK∗
ν ) instead

of l̃(ν,KK∗
ν ) for infinite state spaces.

Nevertheless, the interest of the modified logarithmic Sobolev constant can al-
ready be seen in the simplest situation one can imagine. Let S be the two point
set {0, 1} endowed with its total σ -field S and assume that K∗

ν = ν (i.e. K is a
probability measure) with ν charging both points. Then 1 ≤ l(ν, ν) ≤ 2. In fact,
these bounds even hold without any restriction on (S,S), because they can be de-
duced from the trivial observation that λ(ν, ν) = a(K) = 1, in the cases where
K∗
ν = ν, and from the general inequality a(K) ≤ l(ν,KK∗

ν ) ≤ 2λ(ν,KK∗
ν ).

This result should be compared with a computation of Diaconis and Saloff-
Coste [8] (see also [1]) showing that in this Bernoulli distribution context

l̃(ν, ν) = 1 − 2ν∗
ln(1/ν∗ − 1)

quantity which goes to zero with ν∗ = ν(0) ∧ ν(1). The exact value of l(ν, ν)
does not seem however to be known. The only informations we have been able to
compute are that l(ν, ν) = 2 for the symmetric law ν(0) = ν(1) = 1/2 and that
otherwise 1 < l(ν, ν) < 2 if 0 < ν∗ < 1/2, with limν∗→0+ l(ν, ν) = 1.

Using on one hand a tensorization property of the modified logarithmic Sobolev
constant and on the other hand approximations of Poisson distributions by Bernoulli
variables, it appears that this ergodic coefficient is larger than a−1 > 0 for the
Metropolis birth and death algorithm associated to the Poisson law on N of
parameter a (while its logarithmic Sobolev constant has to be zero). By appro-
priate exponential test functions, it can be shown that it is exactly a−1 (cf the first
chapter of the collective book [1]). This fact was already used by Wu [16] to study
Poisson point processes.

6. A Gaussian example

In order to illustrate the potential usefulness of the “Lipschitz point of view” devel-
oped in the preceding sections, we examine in this final part some simple Gaussian
kernels. This short study will also provide us with one more opportunity to be
convinced of the relevance of the modified logarithmic Sobolev constant in this
context.

We start with some elementary continuous time computations. Let ã, b̃ and c̃
be fixed real numbers, and consider the one-dimensional diffusion process X =
(Xt )0≤t≤1 strong solution of the s.d.e.

dXt = (̃a + b̃Xt ) dt + c̃ dBt .

(As usual, X0 is assumed to be given independently of the standard Brownian
motion (Bt )0≤t≤1). It is a classical exercise to solve this equation to obtain that if
b̃ �= 0,

X1 = exp(̃b)

[
X0 + ã

b̃
(1 − exp(−b̃))+ c̃

∫ 1

0
exp(−b̃t) dBt

]
.
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We thus introduce the Gaussian kernel K defined by

∀ x ∈ R, ∀ A ∈ R, K(x,A) = N (a + bx, c)[A]

= 1√
2πc

∫
A

exp(−(y − ax − b)2/(2c)) dy

where R is the Borel σ -field of R and

a
ã

b̃
(exp(̃b)− 1), b = exp(̃b), c = c̃2

2b̃
(exp(2b̃)− 1).

For any 0 ≤ t ≤ 1, denote by νt the law ofXt , if ν was the initial distribution of
X0. In particular, we have that ν1 = νK . If µ is another initial probability measure
on the real line, we would like to evaluate, as in the previous section, the evolution
of the relative entropy Ent(µt |νt ) for 0 ≤ t ≤ 1. To begin with, let us assume
that ν and µ are equivalent to Lebesgue measure λ (we still denote by ν and µ
their respective densities) and that the map µ/ν is of C2 class and bounded above
and below by positive constants. Note that the same properties will then also be
satisfied by ft = µt/νt at any time 0 ≤ t ≤ 1. Under these restrictive hypotheses,
the following steps are easily justified:

∂tEnt(µt |νt ) =
∫

ln(ft )∂tµt dλ+
∫
∂tµt dλ−

∫
ft∂t νt dλ

=
∫
L[ln(ft )]µt dλ−

∫
L[ft ]νt dλ

=
∫
ftL[ln(ft )] − L[ft ] dνt

whereL is the generator of the diffusionX, which in particular acts on C2
b functions

f by

∀ x ∈ R, L[f ](x) = c̃2

2
∂2f (x)+ (̃a + b̃x)∂f (x).

It is well-known [3] that by continuity of the paths of X, the operator L satisfies
the change of variables formula: if ϕ and f are C2

b functions,

L[ϕ ◦ f ] = ϕ′(f )L[f ] + ϕ′′(f )
2

�(f, f )

where � is the “carré du champ” associated to L (defined with ϕ(x) = x2). In our
example, it is simply given on appropriate test functions f by �(f, f ) = c̃2(∂f )2.
Since then, for any 0 ≤ t ≤ 1, ftL[ln(ft )] − L[ft ] = 2�(

√
ft ,

√
ft ), it is natural

to introduce the (diffusive) logarithmic Sobolev constant of νt defined by

l(νt ) = inf
f∈C2

c (R)\{0}

∫
(∂f )2 dνt∫

f 2 ln(f 2/νt (f 2)) dνt
.
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In that way we obtain (noting that in the infimum, C2
c (R)\{0} can easily be replaced

by the set of C1 functions f for which the denominator of the latter quotient is finite
and positive) the simple differential inequality

∂tEnt(µt |νt ) ≤ −2̃c2l(νt )Ent(µt |νt ).
Therefore,

Ent(µK|νK) ≤ exp

(
−2̃c2

∫ 1

0
l(νt ) dt

)
Ent(µ|ν).

Without much difficulty, this relation can be extended, first to any probability mea-
sure µ by standard approximations and next to all ν ∈ P(R,R), using the fact that
for arbitrary small t > 0, νt meets the above absolute continuity and regularity
requirements.

We now evaluate the integral
∫ 1

0 l(νt ) dt . Let us consider the simple case where
ν itself is a Gaussian distribution N (̂a, ĉ). Traditional computations show that in
such a nice situation, for any 0 ≤ t ≤ 1, νt = N (̂at , ĉt ) with

ât = exp(̃bt )̂a + ã

b̃
(exp(̃bt)− 1),

ĉt = exp(2b̃t )̂c + c̃2

2b̃
(exp(2b̃t)− 1).

Next we use another well-known result (cf for instance [1] and the references
therein) which makes a direct link between the logarithmic Sobolev constant of a
Gaussian distribution and its variance, namely

l(νt ) = 1

2̂ct
.

Therefore, with the change of variable s = exp(2b̃t), we get that

2̃c2
∫ 1

0
l(νt ) dt =

∫ exp(2b̃)

1

1

ĉs + (s − 1)̃c2/(2b̃)

c̃2ds

2b̃s

=
∫ exp(2b̃)

1

1

As + s − 1

ds

s

=
∫ exp(2b̃)

1

A+ 1

As + s − 1
− 1

s
ds

= [ln(As + s − 1)− ln(s)]exp(2b̃)
1

= ln

(
(A+ 1) exp(2b̃)− 1

A exp(2b̃)

)

where A = 2b̃ĉ/̃c2. Rewriting everything in terms of K and ν, with in particular
χ = c/(b2ĉ) ≥ 0, we have thus proved that

Ent(µK|νK) ≤ (1 + χ)−1 Ent(µ|ν).
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In other words,

α(�2,K, ν) ≥ 1 − (1 + χ)−1 χ

(1 + χ)
.

This lower estimate is actually an equality. Taking indeed taking µ = N (ā, ĉ),
with ā �= â, we see that

Ent(µ|ν) = (ā − â)2

2̂c

Ent(µ|ν)− Ent(µK|νK) = χ

1 + χ
Ent(µ|ν)

and the claim follows.
Note that this example is another occurrence of l̃(ν,KK∗

ν ) = 0. From the
results of Section 4, it follows that χ/(1 +χ) is of the order of l(ν,KK∗

ν ) up to an
universal factor. This result does not seem to follow directly from the expression
of the Gaussian kernel

∀ x ∈ R, KK∗
ν (x, ·) = N

(
ĉa + b2ĉx

b2ĉ + c
,

2b2ĉc2 + c2ĉ

b2ĉ + c)2

)
.

We are now in position to present an example of application of the above con-
siderations. Let (an)n≥0, (bn)n≥0 and (cn)n≥0 be three sequences of real numbers
with cn ≥ 0 for all n ≥ 0. Define the Gaussian kernels

∀ n ≥ 0, ∀ x ∈ R, Kn(x, ·) = N (an + bnx, cn).

Define furthermore a new sequence of positive numbers by the induction relation
ĉn+1 = b2

nĉn + cn, n ≥ 0, starting with ĉ0 = 1.
Set χn = cn

b2
nĉn

for n ≥ 1 (alternatively, these numbers can be given directly by

the iteration χ−1
n+1 = (χ−1

n + 1)b2
n+1cn/cn+1). Assume that

∑
n≥0

χn = +∞. (16)

This hypothesis insures that for any probability measures µ, µ̃ ∈ P(R,R),
lim
n→∞ ‖(µ− µ̃)K0K1 · · ·Kn‖ = 0. (17)

Indeed, let ν = N (0, 1) and observe that ĉn is the variance of νK0K1 · · ·Kn.
Therefore, for every n ≥ 0,

Ent(µK0K1 · · ·Kn|νK0K1 · · ·Kn)
≤ 1

1 + χn
Ent(µK0K1 · · ·Kn−1|νK0K1 · · ·Kn−1).

Thus under (16), we get that

lim
n→∞ Ent(µK0K1 · · ·Kn|νK0K1 · · ·Kn) = 0.
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This implies

lim
n→∞ ‖µK0K1 · · ·Kn − νK0K1 · · ·Kn‖ = 0

due to the general Pinsker-Csiszár-Kullback inequality ‖µ− ν‖ ≤ √
2Ent(µ|ν).

The claim (17) follows. Note finally that (16) is in particular implied by supn≥0 cn <

+∞ and lim supn→∞ bn < 1, under which supn≥0 ĉn < +∞.

Remarks 6.1. a) For n ≥ 0, let us assume that |bn| < 1 and denote by νn =
N (an/(1 − bn), cn/(1 − b2

n)) the reversible probability measure relative to Kn.
A classical way to prove a result such as (17) is to show that for any probability
measure µ ∈ P(R,R),

lim
n→∞ ‖µK0K1 · · ·Kn − νn‖ = 0 (18)

(or sometimes more conveniently limn→∞ Ent(µK0K1 · · ·Kn|νn) = 0). However,
it should be noticed that (18) is not always satisfied under (16). Indeed, it is not
difficult to choose a “wild” sequence (an)n≥0 which will not allow for this con-
vergence (and such an occurrence is not only theoretical, as it often appears in the
context of linear and nonlinear filtering [6]).

Thus even if there exists an invariant probability, it may not always be inter-
esting to consider it. It was this simple observation which convinced us that the
Lipschitz point of view adopted in this work is a pertinent tool in the study of loose
of memory properties for Markov chains. We expect this approach to be fruitful
in situations where the system is far away from being at equilibrium (and thus the
latter is not so meaningful to compute ergodic constants), for instance to study
metastability properties in statistical mechanics.

b) Note that the above inhomogeneous example and the conclusions drawn
from it can be easily rewritten in a continuous time context.

c) One can believe that the above computation of the diffusive logarithmic
Sobolev constant along the trajectory of the time marginals of the process for a nice
initial distribution is quite particular and restricted to the Gaussian case. This is not
the case and Bakry [2] has developed a whole technology to derive such estimates
in continuous time, which furthermore are easier to obtain in a compact state space
context through comparison of Dirichlet forms and measure theoretic techniques.
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