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Abstract

Genetic algorithms are stochastic search methods based on natural
evolution processes. They are defined as a system of particles (or
individuals) evolving randomly and undergoing adaptation in a time
non necessarily homogeneous environment represented by a collection
of fitness functions. The purpose of this work is to study the long time
behavior as well as large population asymptotic of genetic algorithms.
Another side topic is to discuss the applications of genetic algorithms
in numerical function analysis, Feynman-Kac formulae approximations
and in non linear filtering problems. Several variations and refinements
will also be presented including continuous time and branching particle
models with random population size.

Keywords : Genetic algorithms, Branching and Interacting particle
systems, Feynman-Kac formula, non linear Filtering, Numerical func-
tion Optimization.

1 Introduction

In [37] J. H. Holland introduced genetic algorithms as a kind of uni-
versal and global search method based on natural evolution processes.
During the last two decades they have been used as an optimization
tool in a variety of research areas, to name a few: machine learn-
ing [34], control systems [33], electromagnetics [39, 53], economics and
finance [42, 49], aircraft landing [1, 16], topological optimum design
[40] and identification of mechanical inclusions [51, 52].

More recently genetic algorithms have appeared naturally in the study
of Feynman-Kac formulas and non linear filtering problems (the reader
is recommended to consult the survey paper [20] and references therein).
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These particle interpretations of Feynman-Kac models has had numer-
ous applications in many nonlinear filtering problems; to name a few,
radar signal processing ([28, 30]), Global Positioning System ([6, 7]) as
well as in tracking problems ([41, 45, 46, 35]). Other numerical exper-
iments are also given in [11] and [17].
In contrast to the applications in numerical function analysis genetic
algorithms are not used here to approximate the extrema of a given
numerical function but a flow of conditional distributions. In addi-
tion the genetic structure of the algorithm (such as the mutation and
the selection transitions) is not only designed as an instrumental tool
to mimic natural evolution but it is in fact dictated by the dynamics
structure of the so-called non linear filtering equations.

The main purpose of this article is to introduce the reader to the
asymptotic theory of genetic algorithms. We also explain the use of
these stochastic methods for the numerical solving of non linear filter-
ing problems and in numerical function optimization problems. We
also give a detailed discussion on several variations and refinements
algorithms recently proposed in the literature of non linear estimation
problems.

This work is essentially divided into two main parts devoted respec-
tively to the applications of genetic algorithms for the numerical solv-
ing of the so-called non linear filtering equations and the convergence
of genetic algorithms towards the global minima of a given numerical
function. Our presentation of this material has relied heavily on the
two papers [20] and [21].

In the opening section 2 we introduce the two step mutation-selection
procedure and the time inhomogeneous Markov model of genetic algo-
rithms treated in this work. As announced above this model will then
be regarded as a global stochastic search method for studying the set
of the global minima of a given numerical function or as a stochastic
adaptative grid approximation of a flow of conditional distributions in
non linear filtering settings.

To each of these applications correspond a specific asymptotic anal-
ysis. In section 2 we lay the foundations of the work that follows by
explaining the general methodologies needed to study the large pop-
ulation asymptotic and the long time behavior of the algorithm. In
section 2.1 we give an alternative description of the genetic model
presented in section 2 in terms of an N -interacting particle system ap-
proximating model associated to a measure valued dynamical system.
This formulation enables us to identify the limit of the empirical mea-
sures associated to the genetic algorithm in terms of a Feynman-Kac
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formula. The modeling impact of this approach will be illustrated in
non linear filtering in section 3.

Section 2.2 is devoted to the study of the long time behavior of the
genetic model presented in section 2. The idea here is to connect ge-
netic algorithms with the so-called generalized simulated annealing.
We describe a general methodology to conclude that a genetic algo-
rithm converges in probability as time tends to infinity to the set of
global minima of a virtual energy function. We will combine this gen-
eral convergence result with a natural test set approach in section 4 to
prove that the resulting stochastic algorithm converges towards the set
of global minima of the desired fitness function as the time parameter
tends to infinity and when the population size is sufficiently large.

The genetic algorithm presented in section 2 and further developed
in section 3 and section 4 is the crudest of the evolutionary particle
methods. In section 5 we discuss several variations and refinements
arising in the literature about non linear filtering and generalized sim-
ulated annealing.

The final section discusses continuous time genetic algorithms. In con-
trast to the classical Moran-type genetic model commonly used in ge-
netic algorithms literature, our interacting particle system model con-
verges to a deterministic distribution flow. This model has been pro-
posed in [23] for solving continuous time non linear filtering problems.
Several variants based on an auxiliary time discretization procedure
can be found in [11] and [13]. The fundamental difference between the
Moran-type particle scheme and the algorithmss presented in [11, 13].
lies in the fact that in the former competitive interactions occur at
random times. The resulting scheme is therefore a genuine continuous
time particle approximating model.
The interested reader is referred to [20] for a detailed description of
the robust and pathwise filter and for a complete proof of the conver-
gence results in a context more general than we have given. Here we
have chosen to restrict our attention to continuous time Feynman-Kac
formulae. We will also discuss the connections between this scheme
and the generalized and spatially homogeneous Boltzmann models pre-
sented in [36, 44].
We end this paper with a novel branching genetic algorithm in which
the size of the population is not necessarily fixed but random.
Only a selection of existing results is presented here. Deeper informa-
tion should be available in [19, 20, 21].
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2 Description of the Models, Statement of
Some Results

The simplest genetic algorithm is a two stages and time in-homogeneous
Markov chain given for each n ≥ 0 by setting

ξn
def.=

(
ξ1n, . . . , ξN

n

) Selection
−−−−−−−→ ξ̂n

def.=
(
ξ̂1n, . . . , ξ̂N

n

) Mutation
−−−−−−−→ ξn+1

and taking values in a product space EN where N ≥ 1 and E is an
abstract topological space. The coordinates of points of EN are seen
as positions of N particles and the integer parameter N represents the
size of the population.

• The initial system ξ0 =
(
ξ10 , . . . , ξN

0

)
consists of N independent

random particles with a common law η0 on E.

• In the selection transition the particles ξ̂n =
(
ξ̂1n, . . . , ξ̂N

n

)
are

chosen randomly and independently in the previous configuration
ξn =

(
ξ1n, . . . , ξN

n

)
according to a given non necessarily homoge-

neous fitness function

gn : E → IR+,

namely

IP
(
ξ̂n ∈ dx |ξn = y

)
=

N∏

p=1

N∑

i=1

gn(yi)
∑N

j=1 gn(yj)
δyi(dxp) (1)

where dx
def= dx1 × · · ·× dxN is an infinitesimal neighborhood of

the point x = (x1, . . . , xN ) ∈ EN , y = (y1, . . . , yN ) ∈ EN and
δa stands for the Dirac measure at a ∈ E.

• The mutation transition is modelled by independent motions of
each particle that is

IP
(
ξn+1 ∈ dx

∣∣∣ξ̂n = y
)

=
N∏

p=1

Kn+1 (yp, dxp) (2)

where {Kn ; n ≥ 1} is a collection on Markov transition kernels
from E into itself.

The study of the convergence as n → ∞ or as N → ∞ of this algorithm
requires specific developments.
To explain and motivate the organization of our work in the next two
subsections we describe the main ideas involved in the study of these
different asymptotics as well as some of their consequences in the study
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of non linear estimation problems.

Before turning to further details it is convenient at this point to give
a couple of remarks.

As we said above, the previous selection-mutation Markov chain is
the crudest of the genetic type methods. They are in fact a number of
ways to construct variations on this model (see for instance [12, 20, 21]
and section 5). In particular the definition of the initial system as N
i.i.d. particles is not really essential. In numerical function analysis
the asymptotic results as n → ∞ (and fixed N) presented here (see
also [8] and [21]) are valid for any choice of N starting points. In non
linear filtering settings we will be interested in the asymptotic behavior
of the empirical measures of the system as N → ∞. In this framework
the initial distribution η0 is not arbitrarily chosen but it represents
the initial law of the state signal. Therefore the initial configuration
of the particle systems will be chosen so that the associated empirical
measure is an N -approximating measure of η0.

Another more general remark is that in filtering problems the choice
of quantities (η0, gn, Kn) is dictated by the problem at hand. In some
situations the initial law η0, the transitions of the state signal Kn

and/or the corresponding fitness functions gn are not explicitly known
and/or we cannot simulate random variables exactly according to η0
and/or Kn. Therefore we need to introduce additional approximat-
ing quantities (η(M)

0 , g(M)
n , K(M)

n ), where the parameter M ≥ 1 is a
measure of the quality of the approximation so that in some sense
(η(M)

0 , g(M)
n , K(M)

n ) → (η0, gn, Kn) as M → ∞. The way the two
asymptotics N → ∞ and M → ∞ combine are studied in all details
in [18].

2.1 Large Population Asymptotic

To show one of the central roles played by the selection/mutation tran-
sitions (1) and (2) we start with the study of the asymptotic behavior
of the empirical measures associated to the systems of particles ξn and
ξ̂n,

m(ξn) def.=
1
N

N∑

i=1

δξi
n

and m(ξ̂n) def.=
1
N

N∑

i=1

δξ̂i
n
, n ≥ 0

as the number of particles N tends to infinity. It is transparent from
the previous construction that the pair selection/mutation transition
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can be summarized, for each each n ≥ 0, as follows

IP (ξn+1 ∈ dx |ξn = y ) =
N∏

p=1

N∑

i=1

gn(yi)
∑N

j=1 gn(yj)
Kn+1

(
yi, dxp

)
. (3)

In order to obtain a more tractable description of (3) in terms of a
transition which only depends on the empirical measure of the system
m(ξn) it is convenient to introduce some additional notations. We
recall that any transition probability kernel K(x, dy) on E generates
two integral operators. One is acting on the set Bb(E) of bounded
Borel test functions f : E → IR endowed with the supremum norm,
defined by

‖f‖ = sup
x∈E

|f(x)|

and the other on the set M1(E) of probability measures µ on E

K(f)(x) def.=
∫

K(x, dz) f(z)

and
(µK)(f) def.= µ(Kf) =

∫
µ(dx)K(x, dz) f(z)

If K1 and K2 are two integral operators on Bb(E) we denote by K1K2

the composite operator on Bb(E) defined for any f ∈ Bb(E) by

K1K2f(x) =
∫

E
K1(x, dy)K2(y, dz) f(z)

Using these notations (3) can be rewritten as

IP (ξn+1 ∈ dx |ξn = y ) =
N∏

p=1

Φn+1

(
1
N

N∑

i=1

δyi

)
(dxp), n ≥ 0

(4)

where for all n ≥ 0, Φn+1 : M1(E) → M1(E) is the mapping defined
by

Φn+1(η)
def.= Ψn(η)Kn+1 with Ψn(η)(f) def.=

η(gn f)
η(gn)

∀f ∈ Bb(E)

(5)

We note that the one-step mapping Φn+1 involves two separate tran-
sitions: The first one η )→ Ψn(η) is nonlinear and it will be called the
updating step and the second one η )→ ηKn+1 will be called the pre-
diction transition with reference to filtering theory.
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With this formulation it also becomes quite clear that the flow of em-
pirical measures {m(ξn) ; n ≥ 0} converge in some sense as N → to
the solution {ηn ; n ≥ 0} of the following measure valued process

ηn = Φn (ηn−1) , n ≥ 1 (6)

Intuitively speaking if m(ξn−1) is close to the desired distribution ηn−1

then one expect that Φn(m(ξn−1)) is a nice approximating measure for
ηn. Therefore at the next step the particle system ξn = (ξ1n, . . . , ξN

n )
looks like a sequence of independent random variables with common
law ηn and therefore m(ξn) is close to the desired distribution ηn...

As a parenthesis and along the same ideas we can associate to any
abstract measure valued process (6) an N -interacting particle approx-
imating model as in (4). In other words the previous algorithm is
a particular example of particle approximating model and the mu-
tation/selection transitions are dictated by the form of the limiting
measure valued dynamical system (6).

In our situation, the preceding scheme is clearly a system of inter-
acting particles undergoing adaptation in a time non-homogeneous en-
vironment represented by the fitness functions {gn; n ≥ 0} and the
selection/mutation transitions are dictated by the nature of the two
step mappings {Φn ; n ≥ 1}. Roughly speaking the natural idea is to
approximate the two step transitions

ηn

Updating
−−−−−−−→ η̂n

def= ψn(ηn)
Prediction
−−−−−−−→ ηn = η̂nKn+1, n ≥ 0

of the system (6) by a two step Markov chain taking values in the set of
finitely discrete probability measures with atoms of size some integer
multiple of 1/N . Namely, for each n ≥ 0,

ηN
n

def.=
1
N

N∑

i=1

δξi
n

Selection
−−−−−→ η̂N

n
def.=

1
N

N∑

i=1

δξ̂i
n

Mutation
−−−−−→ ηN

n+1 =
1
N

N∑

i=1

δξi
n+1

.

(7)

These constructions first appeared in [26] and [27] and they were devel-
oped in [24]. In [20] the authors present an exposé of the mathematical
theory that it is useful in analyzing the convergence of such particle
approximating models including law of large numbers, large deviations
principles, fluctuations and empirical process theory as well as semi-
group techniques and limit theorems for processes. In section 3 we
briefly indicate some of the main directions explored in this recent re-
search and we will introduce the reader to some mathematical tools
upon which the theory dwells.
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Anticipating on section 3.1 we also mention that the measure valued
dynamical system (6) can be explicitly solved. More precisely if

X = {Xn ; n ≥ 0}

denotes a time in-homogeneous Markov chain with transition proba-
bility kernels {Kn ; n ≥ 1} and initial distribution η0 and if γn(f),
f ∈ Bb(E), represents the Feynman-Kac formula

γn(f) = IE

(
f(Xn)

n−1∏

k=0

gk(Xk)

)

(with the convention
∏

∅ = 1) then the distribution flow {ηn; n ≥ 0}
defined for any n ≥ 0 and for any test function f ∈ Bb(E) as the ratio

ηn(f) =
γn(f)
γn(1)

(8)

is solution of the measure valued dynamical system (6). In fact, as
we shall see in the further development of section 3 the classical non
linear filtering problem can be summarized as to find distributions of
the form (8). In this framework the probability kernels {Kn ; n ≥ 1}
represent the transitions of the signal process and the fitness functions
{gn ; n ≥ 0} depend on the observation data and on the density of the
noise source.

2.2 Large Time Behavior

Our next objective is to initiate the study of the long time behavior of
the genetic type algorithms. In contrast to the situation presented in
section 2.1 the size N of the particle systems is fixed and the genetic
model is thought as a global search procedure for studying the set U"

of global minima of a given numerical function U : E → IR+ and the
state space E is assumed to be finite, namely

U" def.=
{
x ∈ E ; U(x) = min

E
U
}

To clarify the notations we shall use the following notations

Q(1)
n (x, dy) =

N∏

p=1

Kn(xp, dyp)

and

Q(2)
n (x, dy) =

N∏

p=1

N∑

i=1

gn(yi)
∑N

j=1 gn(yj)
δyi(dxp)
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Thus ξ = {ξn ; n ≥ 0} is a time in-homogeneous Markov chain with
transition probability kernel

Qn = Q(2)
n−1Q(1)

n

and ξ̂ = {ξ̂n ; n ≥ 0} is a time in-homogeneous Markov chain with
transition probability kernel

Q̂n = Q(1)
n Q(2)

n (9)

In time homogeneous settings (that is if Kn = K and gn = g) the gen-
eral theory of time homogeneous Markov chains can be used to study
the long time behavior of these two chains but to our knowledge the
stochastic stability results which can be stated are not really useful to
calibrate the convergence of genetic algorithms to the desired extrema
of a given numerical function.
One of the apparent difficulty in establishing a useful convergence re-
sult as n → ∞ is finding a candidate invariant measure which enable
us to describe some interesting aspects of the limiting behavior of the
algorithm.

The key idea is to introduce an inverse cooling schedule parameter
β : IR+ → IR+ with limt→∞ β(t) = ∞ so that to reduce the analysis
to the study of a generalized simulated annealing. This idea has been
initiated in [8, 9, 10] and it has been simplified and further extended
in [21].
As the time parameter is growing the arbitrary exploration of the path
space by the particles during the mutation step will progressively dis-
appear. The precise choice of the mutation transitions Kn in terms of
the parameter β(n) will be given in section 4.1. We already mention
that in the selection transitions the fitness functions gn will take the
form

gn(x) = e−β(n)U(x), n ≥ 1

and, as the time is growing, the randomness in the selection will also
tend to disappear so that the particles with below pick fitness will pro-
gressively not be selected.

The purpose of this paper is to present some theoretical background
needed to analyze the convergence of the algorithm. The results pre-
sented here will be restricted to the transition probability kernel (9)
and they can be found with complete proof in [21].
In this opening section we describe the basic but general idea which is
in fact quite simple. This methodology will be used in several part of
this paper. It is also quite general and it can be used in other contexts.
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We have tried to present easily verifiable conditions and results at a
relevant level of generality. Our claim that this description of the muta-
tion and selection transitions is the natural framework for formulating
and studying the long time behavior of genetic algorithms in numerical
function analysis will be amply justified by the results that will follows.

We provide no examples in this short section, this choice is delib-
erate. In section 4 we will show how to obtain the transitions Q(1)

β and
Q(2)

β in terms of the mutation kernels and the fitness functions. We
will also use this framework in section 5 for studying a related genetic
algorithm in which the mutation and the selection stage take place
randomly at each time step. We also believe that it is possible to use
this formulation to analyze the convergence of the branching genetic
type variants presented in section 5.

To commence to formalize this we first chose the mutation/selection
transitions Q(1)

n and Q(2)
n as governed by β(n), that is

Q(1)
n = Q(1)

β(n) and Q(2)
n = Q(2)

β(n) (10)

and so that for any β > 0, Q(1)
β and Q(1)

β take the form

Q(1)
β (x, y) = q(1)

β (x, y) e−β V (1)(x,y)

and
Q(2)

β (x, y) = q(2)
β (x, y) e−β V (2)(x,y)

for some numerical functions q(1)
β , q(2)

β : EN × EN −→ IR+ and V (1),

V (2) : EN × EN −→ IR+ (IR+
def.= IR+ ∪ {+∞}).

It is then straightforward to check that the transition probability ker-
nels

Q̂β(x, y) def.= Q(1)
β Q(2)

β (x, y)

take the form

Q̂β(x, y) =
∑

v∈V
q̂β(x, v, y) e−β V̂ (x,v,y) (11)

with V = EN and

q̂β(x, v, y) = q(1)
β (x, v)q(2)

β (v, y)

and
V̂ (x, v, y) = V (1)(x, v) + V (2)(v, y)
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This kind of mathematical models naturally arise when studying the
long time behavior of stochastic algorithms such as the generalized
simulated annealing. The parameter β in (10) will be regarded as the
inverse freezing schedule in classical simulated annealing and it will be
used to control the random perturbations of the stochastic algorithm.
When β → ∞ the random perturbations will progressively disappear
and the two different cost functions V (1) and V (2) will be regarded
respectively as the mutation and selection costs to communicate from
a population to another.

The objective is to prove that the law of a well chosen time in-
homogeneous genetic particle scheme concentrates as times tends to
infinity to the set U" of global minima of a desired numerical function
U : E → IR+. In order to prove this asymptotic result we need to
characterize more explicitly the long time behavior of the algorithm in
terms of the communication cost functions V (1) and V (2).

As traditionally, under some nice conditions, the first step consists
in proving that the algorithm converges to the set of the global minima
W " of a virtual energy function W : EN → IR+ defined explicitly in
terms of the communication cost functions V (1) and V (2).
The second subtle step will be to find conditions on the population size
which ensures that W " is contained into the subset U" × . . . × U"(⊂
EN ). We will settle this question in section 4 and 5 by using a natural
test set approach.

Under appropriate continuity and irreductibility conditions the first
step can be solved using quite general results on the generalized sim-
ulated annealing. Anticipating on section 5.1 we also notice that the
transition probability kernel Q̃β defined by

Q̃β = α1 Q(1)
β + α2 Q(2)

β α1 + α2 = 1 (α1,α2 ∈ (0, 1)) (12)

can be written as in (11) with V = {1, 2}.

The precise continuity and irreductibility condition needed to handle
to the first step are summarized in the following assumption.

(H) The transition probability kernels Q̂β take the form

Q̂β(x, y) =
∑

v∈V
q̂β(x, v, y) e−β V̂ (x,v,y)

where V is a finite set and there exists a non negative function

q̂ : EN × V × EN −→ IR+
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so that

• For any x, y ∈ EN and v ∈ V and β > 0 we have

lim
β→+∞

q̂β(x, v, z) = q̂(x, v, z)

and
q̂β(x, v, z) > 0 ⇐⇒ q̂(x, v, z) > 0

• For every q̂(x, v, z) > 0 and for some β0 ≥ 0

sup
β≥β0

|d log q̂β

dβ
(x, v, z)| < +∞

• For any x, y ∈ EN there exists a integer r ≥ 1 and sequence
of elements (pk, vk)0≤k≤r in EN × V such that

p0 = x and q̂(pk, vk, pk+1) > 0 ∀0 ≤ k < r and pr = y

It is transparent from these conditions that we have some suitable
function ε(β) → 0, as β → +∞, such that

(1 − ε(β)) Qβ(x, y) ≤ Q̂β(x, y) ≤ (1 + ε(β)) Qβ(x, y) (13)

where
Qβ(x, y) =

∑

v∈V(x,y)

q̂(x, v, y) e−βV̂ (x,v,y)

and
V(x, y) = {v ∈ V : q̂(x, v, y) > 0}

But, if we write

V (x, y) = min
v∈V(x,y)

V̂ (x, v, y)

q(x, y) =
∑

v∈V!(x,y)

q̂(x, v, y)

V"(x, y) = {v ∈ V(x, y) : V̂ (x, v, y) = V (x, y)}

then we also have that

Qβ(x, y)

=
∑

v∈V!(x,y)

q̂(x, v, y) e−βV (x,y)

+ e−βV (x,y)
∑

v∈V(x,y)−V!(x,y)

q̂(x, v, y) e−β(V̂ (x,v,y)−V (x,y))

= q(x, y) e−βV (x,y)

+ e−βV (x,y)
∑

v∈V(x,y)−V!(x,y)

q̂(x, v, y) e−β(V̂ (x,u,y)−V (x,y))
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Note that condition (H) implies that q is irreducible. Furthermore, if
we write,

I = {(x, y) ∈ E2 : V(x, y) /= ∅}
J = {(x, v, y) ∈ EN × V × EN : (x, y) ∈ I v ∈ V(x, y)}

and

h1 = min
(x,y)∈I

∑

v∈V(x,y)−V!(x,y)

q̂(x, v, y)/q(x, y)

h2 = min
(x,v,y) : v (∈V!(x,y)

(V̂ (x, v, y) − V (x, y))

using (13) we get the system of inequalities

(1 − ε(β)) q(x, y) e−βV (x,y) ≤ Q̂β(x, y)

and

Q̂β(x, y) ≤ (1 + ε(β)) (1 + h1 e−βh2) q(x, y) e−βV (x,y) (14)

As a parenthesis if we choose q(x, y) > 0, after some elementary com-
putations, then we find that
∣∣∣∣∣
d log Q̂β(x, y)

dβ

∣∣∣∣∣ ≤ sup
v∈V(x,y)

|d log q̂β

dβ
(x, v, y)| + sup

v∈V(x,y)
V̂ (x, v, y)

The inequality (14) shows that the transition probability kernels

{Q̂β ; β > 0}

are of the general form of generalized simulated annealing models stud-
ied in [54] and [21].
In [54] the author studies the asymptotic behavior of such chain using
large deviation techniques and in [21] the authors propose an alterna-
tive approach based on semi-group techniques. Both approaches give
a precise study of the convergence of the time-inhomogeneous Markov
process controlled by a suitably chosen cooling schedule and associated
to the family of Markov transitions Q̂β of the form (11) when V is an
auxiliary finite set.

The first method in [54] is developed for discrete time models whereas
the convergence analysis in [21] is centered around continuous time
models. There is a vast literature on discrete time simulated anneal-
ing (see for instance [54] and references therein). For this reason we
have chosen to give a more detailed description of the second approach.

13



It is now convenient to introduce some additional notations. In dis-
crete time or continuous time settings the asymptotic behavior of the
desired time-inhomogeneous Markov processes will be strongly related
to the virtual energy function W : EN → IR+ defined as follows

W (x) = min
g∈G(x)

∑

(y→z)∈g

V (y, z) − min
x′∈EN

min
g∈G(x′)

∑

(y→z)∈g

V (y, z) (15)

where G(x) is the set of x-graphs over EN (we recall that an x-graph
is an oriented tree over the vertice set EN such that for any x /= y
there exists a unique path in the x-graph leading from x to y. See also
[5] or [32] for more details), and V : EN × EN → ÎR+ is the virtual
communication cost function given by

V (x, y) = min {V̂ (x, v, y) ; v ∈ V q̂(x, v, y) > 0}

We will also use the notation

W " = {x ∈ EN : W (x) = min
E

W}

As announced the first approach presented in [54] gives a complete
answer for the convergence in discrete time settings and in the time-
inhomogeneous case when the parameter β(n) is an increasing function
of the time parameter n. With some obvious abusive notations let us
denote by {ξ̂n ; n ≥ 0} the discrete time and time-inhomogeneous
Markov chain starting at some point x ∈ EN and associated to the
collection of time-inhomogeneous transitions {Q̂β(n) ; n ≥ 1}.

Theorem 2.1 ([54]) There exists a constant C0 (which can be ex-
plicitly described in terms of V ) such that if β(n) takes the parametric
form β(n) = 1

C log n for sufficiently large n and C > C0 then

lim
n→∞

IP
(
ξ̂n ∈ W "

)
= 1

The semi-group approach presented in [21] is based on log-Sobolev
inequalities and on the notion of relative entropy. We recall that the
relative entropy Entπ(µ) of a measure µ with respect to a measure π
(charging all the points) is defined by

Entπ(µ) =
∑

x∈E

µ(x) log (µ(x)/π(x))

In contrast to the latter the former approach is based entirely on con-
siderations of the time continuous semi-group associated to the Markov
kernels Q̂β, β > 0. Namely define, for f : EN → IR

Lβ(f)(x) =
∑

y∈EN

(f(y) − f(x)) Q̂β(x, y)
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Instead of the discrete time model introduced above we are now con-
cerned with the continuous time Markov process defined as follows.
For a probability measure µ on E, an inverse-freezing schedule β ∈
C1(IR+, IR+) we slight abuse notations and we write {ξ̂t ; t ∈ IR+} the
canonical process associated to the family of generators

(Lβ(t))t≥0 = (Q̂β(t) − I)t≥0

and whose initial condition is µ0 = µ. We also write µ(t) the distribu-
tion of ξ̂t.
Before we turn to the long time behavior of ξt we first give a more
tractable description of this process. Let ∆ = {∆k ; k ≥ 0} be inde-
pendent and exponentially distributed random variables with param-
eter 1 and, given ∆, let ζ̂ = {ζ̂n ; n ≥ 0} be a time inhomogeneous
Markov chain on EN with initial distribution µ and time inhomoge-
neous transition probability kernels

K̂n
def.= Q̂β(Tn), n ≥ 1

where

Tn
def.=

n∑

k=0

∆k, n ≥ 0

Then

ξ̂t =

{
ζ̂0 0 ≤ t < T0

ζ̂n Tn−1 ≤ t < Tn

defines a time in-homogeneous Markov process ξ̂ = {ξ̂t ; t ∈ IR+} with
initial law µ and infinitesimal generators {Lβ(t) ; t ∈ IR+}.
Whenever ξ̂ is time homogeneous (i.e. β(t) = β) it is well known that
Lβ has a unique invariant probability measure πβ so that

∀f ∈ Bb(EN ) πβ(Lβ(f)) = 0

and πβ charges all the points. Asymptotically the behavior of the
invariant measure πβ as β → ∞ depends principally on the virtual
energy function W defined in (15). To be more precise we recall that
πβ can be written as follows

πβ(x) =
R̂β(x)

∑
z∈EN R̂β(z)

where R̂β(x) =
∑

g∈G(x)

∏

(y→z)∈g

Q̂β(y, z)

Now, from the inequality (14) one concludes that

ε1(β) Rβ(x) ≤ R̂β(x) ≤ ε2(β) Rβ(x)

15



where εi(β), i = 1, 2, are some functions such that

lim
β→∞

εi(β) = 1, i = 1, 2

and
Rβ(x) =

∑

g∈G(x)

∏

(y→z)∈g

q(y, z) e−βV (y,z)

This can also be rewritten in the form

Rβ(x) =
∑

g∈G(x)

q(g) e−βV (g)

with

q(g) =
∏

(y→z)∈g

q(y, z) and V (g) =
∑

(y→z)∈g

V (y, z)

Therefore we clearly have the estimate

lim
β→∞

− 1
β

log πβ(x) = lim
β→∞

− 1
β

log Rβ(x) − lim
β→∞

− 1
β

log
∑

z∈EN

Rβ(z)

= min
g∈G(x)

V (g) − min
z∈EN

min
g∈G(z)

V (g)

= W (x)

Due to this estimate, for each β > 0, if {ξ̂β,t ; t ≥ 0} denotes the time
homogeneous Markov process associated to Lβ then we have that

lim
β→∞

lim
t→∞

IP
(
ξ̂β,t ∈ W "

)
= 1

In the time-inhomogeneous situation the convergence of the algorithm
to W " is guaranteed by the following result.

Theorem 2.2 ([21]) Let {Q̂β ; β > 0} be a collection of general
Markov kernels of the form

Q̂β(x, y) =
∑

v∈V
q̂β(x, v, y) e−βV̂ (x,v,y)

where V is a given finite set, V̂ : EN × V × EN → IR+ and q̂β :
EN × U × EN → IR+, β ∈ IR+, is a family of functions satisfying
condition (H).
There exist a constant C0 (which can be explicitly described in terms
of V ) such that if β(t) takes the parametric form β(t) = 1

C log t for
sufficiently large t and C > C0 then

lim
t→∞

Entπβ(t) (µ(t)) = 0 and lim
t→∞

IP
(
ξ̂t ∈ W "

)
= 1
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This theorem is quite general and it will be used to study the con-
vergence of genetic algorithm when the corresponding transitions have
the form (11) or (12). It is also powerful enough to allow one to treat
the classical simulated annealing algorithm. In this situation N = 1
and Q̂β takes the form

Q̂β(x, y) = q(x, y) e−β V (x,y)

with
V (x, y) = max (U(y) − U(x), 0)

for x /= y, where q is an irreducible transition probability kernel on E
and U : E → IR+. In the special case where q is symmetric (that is
q(x, y) = q(y, x)) it is also well known that the corresponding virtual
energy function W = U and the previous theorem implies that con-
verges to the desired subset of the global minima U". For genetic type
algorithms the virtual energy function depends on the function U in
a more subtle way and we need to work harder to check that W " is
contained into the desired subset of global minima.

The results developed here are in fact a particular form of those
in [21] which also apply to study the convergence of generalized simu-
lated annealing with random and time inhomogeneous communication
cost functions. Although this subject is tangential to the main object
of this article let us discuss how these results may be useful in solving
mean cost optimization problems.
In some practical problems the object is to find the global minima of
a function U : E → IR+ defined by

U(x) = IE (U(x, Z)) =
∫

F
U(x, z) ν(dz)

where Z is a random variable taking values in a finite set F with
distribution ν and U : E × F → IR+. The essential problem is to
compute at each time step the mean cost function U and the huge
size of the set F often precludes the use of the previous stochastic
algorithms.
To solve this problem an additional level of approximation is needed.
The natural idea proposed in [21] consists in replacing at each moment
of time in the description of the stochastic algorithm the function U
by the time inhomogeneous and random function

Ut(x) def.=
1
tA

∫ tA

0
U(x, Zs) ds

where A > 0 and {Zt ; t ≥ 0} is a given time homogeneous Markov
process associated to the generator G = K−Id where K is an irreducible
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transition probability kernel on E with invariant measure ν. A full
discussion of the convergence of the resulting stochastic algorithm to
the desired subset U" is outside the scope of this work, the interested
reader is referred to [21].

3 Feynman-Kac and Non Linear Filtering
Models

3.1 Description of the Models

The nonlinear filtering problem consists in computing the conditional
distribution of internal states in dynamical systems, when partial ob-
servations are made and random perturbations are present in the dy-
namics as well as in the sensors. In discrete time settings the state
signal X = {Xn ; n ≥ 0} is a discrete time Markov chain taking
values in a Polish space E (i.e. a complete separable metric space)
with transition probabilities {Kn ; n ≥ 1} and initial distribution η0.
The observation sequence Y = {Yn ; n ≥ 0} are IRq-valued random
variables and take the form

Yn = Hn(Xn, Vn)

where the Vn are independent and q-dimensional variables, indepen-
dent of X and with a law having a known density, and Hn is a mea-
surable function from E × IRq into IRq. For any x ∈ E we assume that
the variable Yn = Hn(x, Vn) admits a positive density y )→ ϕn(x, y)
and the function ϕn is bounded. To clarify the notations we fix the
observations Yn = yn, n ≥ 0 and we write

gn(x) def.= ϕn(x, yn)

For somewhat technical reasons we will assume that Hn and ϕn and
the observation sequence {yn ; n ≥ 0} are chosen so that gn is a pos-
itive and bounded function on E. These assumptions can be relaxed
considerably, a more complete and general set of assumptions is for-
mulated in [17] and [18].
Given the stochastic nature of the pair signal/observation process the
nonlinear filtering problem consists in computing recursively in time
the one step predictor conditional probabilities ηn and the filter con-
ditional distributions η̂n given for any bounded Borel test function f
by

ηn(f) = IE(f(Xn)|Y0 = y0, . . . , Yn−1 = yn−1)
η̂n(f) = IE(f(Xn)|Y0 = y0, . . . , Yn−1 = yn−1, Yn = yn)
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As usually the n-step filter η̂n is written in terms of ηn as

η̂n(f) = Ψn(ηn)(f) =
ηn (f gn)
ηn (gn)

(16)

and the n-step predictor is defined in terms of the Feynman-Kac type
formula

ηn(f) =
γn(f)
γn(1)

with γn(f) = IE

(
f(Xn)

n−1∏

k=0

gk(Xk)

)
(17)

with the convention
∏

∅ = 1. By (16), the n-step filter η̂n may also be
expressed as the ration

η̂n(f) =
γ̂n(f)
γ̂n(1)

(18)

with

γ̂n(f) = γn(gnf) = IE

(
f(Xn)

n∏

k=0

gk(Xk)

)

It is also not difficult to check that γn and γ̂n are connected by

γn = γ̂n−1Kn, n ≥ 1 (19)

It then follows from the relations (16) and (19) that for any n ≥ 1

ηn = Φn (ηn−1) , (20)

with
Φn(η) = Ψn−1(η)Kn.

Another interest feature of the genetic algorithm defined by (3) is that
it can be used to approximate the Feynman-Kac formulas γn(f) and
γ̂n(f) defined in (17) and (18). One of the best ways for introducing the
corresponding particle approximating models is through the following
observation. By definition it is easy to establish that for any n ≥ 0

ηn(gn) =
γn(gn)
γn(1)

=
γn+1(1)
γn(1)

This yields that

γn(1) =
n−1∏

p=0

ηp(gp) and γn(f) = ηn(f)
n−1∏

p=0

ηp(gp)

with the usual convention
∏

∅ = 1. Taking into consideration these
relations we define a natural N -approximating measure γN

n for γn by
setting

γN
n (1) =

n−1∏

p=0

ηN
p (gp) and γN

n (f) = ηN
n (f) γN

n (1) (21)
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In view of (7) and using the same line of ideas we can defined the cor-
responding N -approximating measures of γ̂n and η̂n. We have chosen
here to restrict our attention to the distributions γn and ηn.

3.2 Asymptotic Behavior

One of the simplest way for studying the asymptotic behavior as N →
∞ of the genetic algorithm presented in section 2 is through the anal-
ysis of the un-normalized distributions {γn ; n ≥ 0}. This approach
has been initiated in [26] and it has been further developed in [19]
and [20]. Here we follow line by line the synthetic presentation given
in [19]. This approach is based on the observation that the dynamics
structure of the latter is linear and one might expect that the analysis
of the corresponding approximating measures will be simplified. In
view of (17) and (18) we have that

∀0 ≤ p ≤ n, γn = γp Lp,n, (γ0 = η0) (22)

where {Lp,n ; 0 ≤ p ≤ n} is the time inhomogeneous semi-group
defined by the relations

Lp,n = Lp+1Lp+2 . . . Ln with Ln(f) = gn−1.Kn(f)

and the convention Ln,n = Id. Using these notations one can also
check that the one step mappings Φn can be rewritten as

Φn(η)(f) =
η(Ln(f))
η(Ln(1))

for any η ∈ M1(E) and f ∈ Bb(E). Using these notations we notice
that for any n ≥ 0 and f ∈ Bb(E) the stochastic process

{MN
q (f) ; 0 ≤ q ≤ n}

defined as

MN
q (f) def.= γN

q (Lq,nf) − γq(Lq,nf)

=
q∑

p=0

(
γN

p (Lp,nf) − γN
p−1(LpLp,nf)

)

=
q∑

p=0

γN
p (1)

(
ηN

p (Lp,nf) − Φp

(
ηN

p−1

)
(Lp,nf)

)
, (23)

with the convention Φ0

(
ηN
−1

)
= η0, is a martingale with respect to the

natural filtration FN = {FN
n ; n ≥ 0} associated with the N -particle
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system {ξn ; n ≥ 0} and its angle bracket is given by

〈MN(f)〉q =
1
N

q∑

p=0

(
γN

p (1)
)2

Φp(ηN
p−1)

( (
Lp,nf − Φp(ηN

p−1)Lp,nf
)2)

(24)

One concludes easily that γN
n is an approximating measure of γn with-

out any bias, that is for any bounded Borel test function f

IE
(
γN

n (f)
)

= γn(f) (25)

and

IE
((
γN

n (f) − γn(f)
)2)

=
1
N

n∑

p=0

IE
((
γN

p (1)
)2 Φp(ηN

p−1)
( (

Lp,nf − Φp(ηN
p−1)Lp,nf

)2))

(26)

Under our assumptions it is also clear that there exist some finite
constants C(n) < ∞ such that

IE
((
γN

n (f) − γn(f)
)2)1/2

≤ C(n)√
N

‖f‖

Exponential bounds can also be obtained using the decomposition (23).
For instance, by definition of ηN

t , Hoeffding’s inequality implies that
for each 0 ≤ p ≤ n and for any ε > 0

IP
(∣∣ηN

p (Lp,nf) − Φp

(
ηN

p−1

)
(Lp,nf)

∣∣ > ε
∣∣ηN

n−1

)
≤ 2 e

−N
8

ε2

‖Lp,nf‖2

¿From which one concludes that

IP
(

sup
0≤p≤n

∣∣ηN
p (Lp,nf) − Φp

(
ηN

p−1

)
(Lp,nf)

∣∣ > ε

)
≤ 2

n∑

p=0

e
−N

8
ε2

‖Lp,nf‖2

Since the fitness functions are assumed to be bounded this exponential
bound implies that there exists some finite constants C1(n) and C2(n)
such that for any bounded Borel function f , ‖f‖ ≤ 1 and for every
ε > 0 we have that

IP
(

sup
0≤p≤n

∣∣γN
p (Lp,nf) − γp(Lp,nf)

∣∣ > ε

)
≤ C1(n) exp− Nε2

C2(n)

We now give a brief indication of how these results can be used to
obtain useful estimates for the N -approximating measures ηN

n and η̂N
n .
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¿From the previous displayed exponential rate one can also prove that
there exists some finite constants C1(n), C2(n) such that for any ε > 0
and for any bounded Borel test function f , ‖f‖ ≤ 1

IP
(∣∣ηN

n (f) − ηn(f)
∣∣ > ε

)
≤ C1(n) exp− Nε2

C2(n)
(27)

Precise estimates of these exponential rates are studied in [24] using
large deviations techniques. The previous exponential rates also imply
ILp mean errors

∀p ≥ 1 IE
(∣∣ηN

n (f) − ηn(f)
∣∣p
)1/p

≤ C(p, n)√
N

‖f‖

for some constant C(p, n) < ∞ which only depends on the parameters
p and n. With some little work one can use (25) and (26) to prove
that there exists some finite constants C(n) such that for any bounded
Borel function f such that ‖f‖ ≤ 1

∣∣IE
(
ηN

n (f)
)
− ηn(f)

∣∣ ≤ C(n)
N

(28)

Taking into consideration this inequality, by the exchangeability of the
particles and the definition of the total variation distance of probability
measures one can check that for each 1 ≤ i ≤ N

‖Law(ξi
n) − ηn‖tv ≤ C(n)

N
(29)

The precise magnitude of variability of these mean errors is given by
central limit theorems. A full discussion on these fluctuations would
be too great digression here but as the form of the angle bracket (24)
indicates one can prove that the sequence of random fields

UN
n (f) def.=

√
N
(
γN

n (f) − γn(f)
)
, f ∈ Bb(E)

converges in law as N → ∞ to a centered Gaussian field

{Un(f) ; f ∈ Bb(E)}

satisfying

IE
(
Un(f)2

)
=

n∑

p=0

(γp(1))2 ηp

(
(Lp,nf − ηpLp,nf)2

)

for any f ∈ Bb(E) (in the sense of convergence of finite dimensional
distributions). The previous fluctuations imply that the sequence of
random fields

WN
n (f) def.=

√
N
(
ηN

n (f) − ηn(f)
)
, f ∈ Bb(E)
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converges in law as N → ∞ to the centered Gaussian field

Wn(f) def.= Un

(
1

γn(1)
(f − ηn(f))

)
, f ∈ Bb(E)

We conclude this section with some comments on the long time be-
havior of the N -interacting particle system approximating models. If
the measure valued dynamical system (20) is sufficiently stable in the
sense that it forgets any erroneous initial condition, then one can prove
uniform convergence results with respect to the time parameter (see
for instance [20, 22] and [25] and references therein). For instance, with
some suitable stability properties for the Markov kernels {Kn ; n ≥ 1}
one can find some coefficient α ∈ (0, 1/2) such that for any bounded
Borel test function f , ‖f‖ ≤ 1,

∀p ≥ 1 sup
n≥0

IE
(∣∣ηN

n (f) − ηn(f)
∣∣p
)1/p

≤ c(p)
Nα

for some constant c(p) < ∞ which only depends on the parameter p.
This uniform convergence result with respect to the time parameter
leads us to hope that maybe we can construct an asymptotic method
to study the convergence of genetic algorithms in numerical function
optimization in a more general settings than the one treated in sec-
tion 2.2 and in the next section.
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4 Numerical Function Analysis

4.1 Description of the Models

The objective of this section is to formulate more precisely the mu-
tation and selection transitions (10) so that the resulting empirical
measures of the genetic algorithm presented in section 2.2 will con-
centrate in probability, as the time parameter tends to infinity, on the
set U" of the global minima of a given numerical function U : E → IR+.

As in section 2.2 we assume that E is a finite state space and

β : IN → IR+

is a inverse cooling schedule. Let a : E × E → IR+ be a numerical
function which induces an equivalence relation on E defined by

x ∼ y ⇐⇒ a(x, y) = 0

This leads us naturally to consider the partition

S1, . . . , Sn(a), n(a) ≥ 1,

induced by ∼.
If x is a typical element of E then the equivalence class of x will be
denoted by S(x)

S(x) = {y ∈ E : x ∼ y}

We further require that

a(x, y) = 0 =⇒ U(x) = U(y)

A trivial example of equivalence relation satisfying this condition is
given by the following function a

a(x, y) = a0 (1 − 1x(y)) , a0 > 0

In this case we clearly have a(x, y) = 0 ⇐⇒ x = y.
The mutation kernels Kn and the fitness functions gn are related to
β(n) as

gn(x) = e−β(n) U(x) and Kn(x, y) = kβ(n)(x, y)

with for any β > 0

kβ(x, y) =

{
k(x, y) e−β a(x,y) if a(x, y) > 0

1
|S(x)|

(
1 −

∑
z (∈S(x) k(x, z) e−β a(x,z)

)
otherwise
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where k : E × E → IR+ is an irreductible Markov kernel, that is for
any x ∈ E ∑

y∈E

k(x, y) = 1

and for any (x, y) ∈ E × E there exists a sequence x0, x1, . . . , xr ∈ E,
r ≥ 1 such that

x0 = x, k(xk, xk+1) > 0 (∀0 ≤ k < r), xr = y

We now describe a general construction which allows us to find the
asymptotics of the desired transition kernels

Q̂β
def.= Q(1)

β Q(2)
β (30)

where

Q(1)
β (x, y) =

N∏

p=1

kβ(xp, yp)

and

Q(2)
β (x, y) =

N∏

p=1

N∑

i=1

e−β U(xi)

∑N
j=1 e−β U(xj)

1xi(yp)

It can be directly checked that

Q(1)
β (x, y)

=
(∏

p:a(xp,yp)=0 kβ(xp, yp)
)

×
(∏

p:a(xp,yp)>0 k(xp, yp)
)

e−β
∑N

p=1 a(xp,yp)

= θ(1)β (x, y) q(1)(x, y) e−β V (1)(x,y)

with

θ(1)β (x, y) =
∏

p:a(xp,yp)=0

kβ(xp, yp)|S(xp)|

q(1)(x, y) =




∏

p:a(xp,yp)>0

k(xp, yp)








∏

p:a(xp,yp)=0

|S(xp)|−1





and

V (1)(x, y) =
N∑

p=1

a(xp, yp)

We also notice that

θ(1)β (x, y) → 1 as β → ∞
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To describe the asymptotic of Q(2)
β as β → ∞ we need to recall some

terminology introduced in [8]. We will use the superscript f" to denote
the set of global minima of a given numerical function f : E → IR on a
given finite state space E so that

f" def.=
{

x ∈ E ; f(x) = min
E

f
}

The cardinality of a finite set E will be denoted by |E| and if x and y
belongs to EN and z ∈ E we write

x(z) = |{p : 1 ≤ p ≤ N , xp = z}|

and

x̂ = {p : 1 ≤ p ≤ N , U(xp) = Û(x)} and Û(x) = min
1≤p≤N

U(xp)

A similar discussion to that above leads to the decomposition

Q(2)
β (x, y) =

N∏

p=1

∑

i:xi=yp

e−β U(xi)

∑N
j=1 e−β U(xj)

=
N∏

p=1

x(yp)
|x̂|

e−β (U(yp)−Û(x))

1 + |x̂|−1
∑

j (∈x̂ e−β (U(xj)−Û(x))

= θ(2)β (x, y) q(2)(x, y) e−β V (2)(x,y) (31)

with

θ(2)β (x, y) = [1 + |x̂|−1
∑

j (∈x̂

e−β (U(xj)−Û(x))]−N

q(2)(x, y) =
N∏

p=1

x(yp)
|x̂| and V (2)(x, y) =

N∑

p=1

(
U(yp) − Û(x)

)

As before we also notice that

θ(2)β (x, y) → 1 as β → ∞

If we combine (4.1) and (31) one concludes that the transition (30) has
the same form as in (11), namely

Q̂β(x, z) =
∑

y∈EN

q̂β(x, y, z) e−β V̂ (x,y,z)

with

q̂β(x, y, z) = q̂(x, y, z) θβ(x, y, z), V̂ (x, y, z) = V (1)(x, y) + V (2)(y, z)

θβ(x, y, z) = θ(1)β (x, y) θ(2)β (y, z), q̂(x, y, z) = q(1)(x, y) q(2)(y, z)
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Using the fact that q(1) is irreducible, q(2)(x, x) > 0 and using the form
of θ(1)β , θ(2)β one can also check that the assumption (H) introduced on
page 11 is satisfied and therefore theorem 2.2 applies to our situation
with

W (x) = min
g∈G(x)

∑

(y→z)∈g

V (y, z) − min
x′∈EN

min
g∈G(x′)

∑

(y→z)∈g

V (y, z) (32)

and

V (x, z) = min
{

V (1)(x, y) + V (2)(y, z) ; q(1)(x, y)q(2)(y, z) > 0
}

(33)

Furthermore we proved in [21] that there exists a critical population
size N(a, U) depending on the function U and on the equivalence re-
lation a such that

N ≥ N(a, U) =⇒ W " ⊂ U" ∩ A

where
A def.= {x ∈ EN : xi ∼ xj ∀1 ≤ i, j ≤ N}

and
U" def.= {x ∈ EN : Û(x) = min

E
U}

4.2 A Test Set Method

To be more precise about this critical population size we need to in-
vestigate more closely the properties of the virtual energy function W .
We now describe a natural test set approach to study the set its global
minima. This approach is based on the following concept of λ-stability

Definition 4.1 Let λ be a non negative real number.
A subset H ⊂ EN is called λ-stable with respect to a communication
cost function V when the following conditions are satisfied:

1. ∀x ∈ H ∀y /∈ H V (x, y) > λ

2. ∀x /∈ H ∃y ∈ H V (x, y) ≤ λ

The importance of the notion of λ-stability resides in the following
result which extends lemma 4.1 of Freidlin-Wentzell [32].

Proposition 4.2 ([21])
Let λ be a non negative real number and H ⊂ EN . Any λ-stable subset
H with respect to V contains W "

One remark is that the subset A is 0-stable with respect to the com-
munication cost function V defined in (33). From this observation one
concludes that the canonical process {ξ̂t ; t ≥ 0} associated to the
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family of generators {Lβt = Q̂βt − Id ; t ≥ 0}, converges as t → ∞ in
probability to the set A and

min
x∈A

W (x) = min
x∈EN

W (x) = 0 (34)

Using classical arguments (34) implies that for any x ∈ A

W (x) = WA(x)
def.= min

g∈GA(x)

∑

(y→z)∈g

VA(y, z) − min
x′∈A

min
g∈GA(x′)

∑

(y→z)∈g

VA(y, z)

where GA(x) is the set of x-graphs over A (here the starting and end
points of the x-graphs are in A) and VA : A × A → IR+ is the taboo
communication cost function defined by setting for any x, y ∈ A

VA(x, y)
= min

{∑|p|−1
k=0 V (pk, pk+1) ; p ∈ Cx,y with ∀0 < k < |p| pk /∈ A

}

where Cx,y is the set of all paths p = (p0, . . . , p|p|), with some length
|p|, admissible for q (that is q(pk, pk+1) > 0 for each 0 ≤ k < |p|)
leading from x to y (that is p0 = x and p|p| = y).
Let A = {A1, . . . , An(a)} be the partition of A induced by the partition
S = {S1, . . . , Sn(a)} of E associated to the relation ∼

∀1 ≤ i ≤ n(a) Ai
def.= A ∩ SN

i = SN
i

with
SN

i
def.= Si × . . . × Si︸ ︷︷ ︸

N times
We observe that for any 1 ≤ i ≤ n(a) and x, y ∈ Ai, V (x, y) = 0.
Using this observation one can prove that for any x ∈ A

WA(x) = WA(x) def.= min
g∈GA(x)

∑

(y→z)∈g

VA(y, z)

− min
x′∈A

min
g∈GA(x′)

∑

(y→z)∈g

VA(y, z)

where VA is the communication cost function defined by setting for
any x ∈ Ai and y ∈ Aj and 1 ≤ i, j ≤ n(a)

VA(x, y) = min{
|p|−1∑

k=0

V (pk, pk+1) : p ∈ Cx,y, ∃0 ≤ n1 < n2 ≤ |p|,

∀ 0 ≤ k ≤ n1, pk ∈ Ai, ∀n1 < k < n2, pk /∈ A,

∀n2 ≤ k ≤ |p|, pk ∈ Aj}
(35)
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As it is easily seen VA(x, y) does not depend on the choice of x ∈ Ai

and y ∈ Aj . Another remark is that

W " = W "
A = W "

A

and therefore the following implication holds for any subset H ⊂ A

∃λ ≥ 0 : H λ− stable w.r.t. VA =⇒ W " ⊂ H (36)

In other words ξ̂t converges in probability as t → ∞ to any λ-stable
subset H ⊂ A with respect to VA. The technical trick now is to find
a critical size N(a, U) and a non negative constant λ(a, U) such that
the subset U" ∩ A is λ(a, U)-stable with respect to VA.
To describe precisely N(a, U) and λ(a, U) we need to introduce some
additional notations. By Γx,y, x, y ∈ E, we denote the paths q in E
joining x and y, that is

∀0 ≤ l < |q| k(xl, xl+1) > 0 q0 = x q|q| = y

We will also note R(a) the smallest integer such that for every x, y ∈ E
in two different classes there exists a path joining x and y with length
|q| ≤ R(a), namely

R(a) = max
1≤i,j≤n(a)

min
(xi,xj)∈Si×Sj

min
q∈Γxi,xj

|q|

It will be also convenient to use the following definitions

7a = min {a(x, y) : x, y ∈ E a(x, y) /= 0}
δ(a) = sup {a(x, y) : x, y ∈ E}

and

7U = min {|U(x) − U(y)| : x, y ∈ E U(x) /= U(y)}
δ(U) = sup {|U(x) − U(y)| : x, y ∈ E}

To formulate precisely our convergence result we need the following
lemma.

Lemma 4.3 ([21]) For every x ∈ A there exists a state y ∈ U" ∩ A
such that

VA(x, y) ≤ (δ(a) + δ(U)) R(a)

For every x, y ∈ A such that Û(x) < Û(y) we have

VA(x, y) ≥ min(∆a, ∆U) N
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Let us write
λ(a, U) def.= (δ(a) + δ(U)) R(a)

and
N(a, f) def.= λ(a, U)/ min(∆a, ∆U)

Using the above lemma one concludes that

N > N(a, f) =⇒ U" ∩ A is λ(a, U) − stable with respect to VA
(37)

If we combine (36) and (37), with theorem 2.2 one concludes that

Theorem 4.4 ([21]) There exist a constant C0 (which can be explic-
itly described in terms of V ) such that if N ≥ N(a, U) and if β(t) takes
the parametric form β(t) = 1

C log t for sufficiently large t and C > C0

then
lim

t→∞
IP
(
ξ̂t ∈ U" ∩A

)
= 1

5 Refinements and Variants

The research literature abounds with variations of the genetic algo-
rithm described in section 2. Each of these variants is intended to
make the selection and/or the mutation more efficient in some sense.
The convergence analysis of all these alternative schemes is far from
being complete. We also emphasize that these variations come from
different sources of inspiration. Some of them are strongly related to
traditional weighted re-sampling plans in weighted bootstrap theory
(see [4] and references therein). Another source of inspiration was pro-
vided by branching and interacting particle system theory. The aim of
this section is to introduce the reader to these recently established con-
nections between branching and interacting particle systems, genetic
algorithms, simulated annealing and bootstrap theory.

We begin our program with an alternative genetic algorithm which
transitions are obtained through choosing randomly at each step the
selection or the mutation transition. This variation has been presented
for the first time in [21] to improve the convergence results of the clas-
sical genetic algorithm studied in section 4.
We will use the general methodology presented in section 2.2 and the
test set approach of section 4 to prove that the corresponding genetic-
type algorithm converges towards the set of the global minima of a
desired numerical function. These results can be found with complete
proof in [21]. We will give some comments on how these results im-
prove the one of section 4.
The second variation has been presented in [27] for solving non lin-
ear filtering problems. The main difference with the classical genetic
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algorithm of section 2 lies in the fact that in the former the muta-
tion kernels also depend on the fitness function. The corresponding
mutation transition has in fact a natural interpretation in non linear
filtering and it can be regarded as a conditional transition probability.
By reference with non linear filtering we will call this kind of mutation
a conditional mutation.
We end this section with a brief presentation of several branching ge-
netic type algorithms. These branching strategies are strongly related
to weighted bootstrap techniques [4].
There are many open problems concerning these variations such as
finding a way to study the convergence in global optimization prob-
lems.

5.1 Random Selection/Mutation Transitions

The setting here is exactly as in section 2.2 and section 4 but the
genetic type algorithm is now described by the transition probability
kernels

Q̃β = α1 Q(1)
β + α2 Q(2)

β α1 + α2 = 1 (α1,α2 ∈ (0, 1))

Returning to the definition of Q(1)
β and Q(2)

β given in (4.1) and (31)
and using the same notations as in there one concludes that Q̃β has
the same form as in (11)

Q̃β(x, z) =
∑

v∈V
q̂β(x, v, z) e−β V̂ (x,v,z)

with V = {1, 2} and for any v ∈ V

q̂β(x, v, y) = θβ(x, v, y) q̂(x, v, y) θβ(x, v, y) = θ(v)
β (x, y)

q̂(x, v, y) = αv q(v)(x, y) V̂ (x, v, y) = V (v)(x, y)

To clarify the presentation we use the superscript ˜(.) to denote the
communication cost function Ṽ , the critical height constant C̃0 arising
in theorem 2.2 and the virtual energy function W̃ associated to the
transition probability kernels Q̃β . ¿From the above observations and
theorem 2.2, choosing β of the form

β(t) =
1
C

log t where C > C̃0

for t sufficiently large, yields that the canonical process

(Ω, P, (Ft)t≥0, (ξ̃t)t≥0)
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associated to the family of generators

Lβ(t) = Q̃β(t) − Id

converges in probability to the set of the global minima W̃ " of the
virtual energy Ṽ associated to Q̃β and defined as in (32) by replacing
the communication cost functions V by Ṽ where

Ṽ (x, y) = min
{
V (v)(x, y) ; v ∈ V , q(v)(x, y) > 0

}

By the same test set approach we used in section 4 the technical trick
here is to find a critical size Ñ(a, U) and a non negative constant
λ̃(a, U) such that the subset U" ∩ A is λ̃(a, U)-stable with respect to
ṼA, where ṼA is defined as in (35) by replacing the communication
cost function V by Ṽ . In this setting the analogue of lemma 4.3 is the
following

Lemma 5.1 ([21]) For every x, y ∈ A such that Û(x) ≥ Û(y) we
have

ṼA(x, y) ≤ δ(a) R(a)

For every x, y ∈ A such that Û(x) < Û(y) we have

ṼA(x, y) ≥ min(∆a, ∆U) N

Now, if we write

λ̃(a, U) = δ(a) R(a) and Ñ(a, U) = λ̃(a, U)/ min(∆a, ∆U)

one concludes that

N > Ñ(a, U) =⇒ U" ∩ A is λ̃(a, U) − stable with respect to VA

Using the same line of arguments as in the end of section 4 one gets
finally

Theorem 5.2 ([21]) If N ≥ Ñ(a, U) and if β(t) takes the parametric
form β(t) = 1

C log t for sufficiently large t and C > C̃0 then

lim
t→∞

IP
(
ξ̃t ∈ U" ∩A

)
= 1

Several comments are in order. The first remark is that in contrast to
λ(a, U), the constant λ̃(a, U) does not depend any more on U . Fur-
thermore the critical population size Ñ(a, U) does not depend on δ(U).
In addition, the bound

λ(a, U) > λ̃(a, U)
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seems to indicate that it is more difficult for the algorithm associated
to the communication cost function V to move from one configuration
to a better one. This observation also implies that for the critical size
values we obtained we have that

N(a, U) =
(

1 +
δ(U)
δ(a)

)
Ñ(a, U) > Ñ(a, U)

Let us see what happens when our this alternative genetic type model
specializes to the case where the state is

E = {−1, +1}S S = [−n, n]p p ≥ 1

and the fitness function U is given by

U(x) =
∑

s∈S

∑

s′∈Vs

Is,s′ x(s) x(s′) +
∑

s∈S
h(s) x(s)

where Is,s′ , h(s) ∈ Z, and

∀s ∈ S Vs = {s′ ∈ S : |sk − s′k| ≤ 1, 1 ≤ k ≤ p}

Let k be the Markovian mutation kernel on S given by

k(x, y) =
1

|V(x)| 1V(x)(y)

with
V(x) def= {y ∈ E : Card{s ∈ S : x(s) /= y(s)} ≤ 1}

Suppose that the function a is given by

a(x, y) = (1 − 1x(y)) ∀(x, y) ∈ E2

Then, one can check that

R(a) ≤ max
x,y

min
q∈Cx,y

|q| = card(S) = (2n + 1)p

and
δ(a) = ∆(a) = 1

Let Is,s′ and h(s) be chosen so that ∆U ≥ 1 and let N be an integer
that N > (2n + 1)p. The above theorem shows that N individuals
will solve the optimization problem when using the genetic algorithm
associated to Q̃β .
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5.2 Conditional Mutations

We now present some genetic-type variants arising in non linear fil-
tering literature (see [12, 20] and references therein). For the sake of
unity and to highlight issues in both non linear filtering and numerical
function analysis we place ourselves in the abstract setting of section 2
and section 3.
The first variation is based on the observation that the distribution
flow {η̂n ; n ≥ 0} is solution of a measure valued dynamical system
defined as in (5) by replacing the transitions Kn and the fitness func-
tions gn by the transitions K̂n and the fitness functions ĝn defined for
any f ∈ Bb(E) by setting

K̂n(f) def.=
Kn(gnf)
Kn(gn)

and ĝn
def.= Kn(gn)

More precisely one can check that

η̂n = Φ̂n(η̂n−1), n ≥ 1 (38)

with
Φ̂n(η) def.= Ψ̂n(η)K̂n

and
Ψ̂n(η)(f) def.=

η(ĝn f)
η(ĝn)

∀f ∈ Bb(E)

As in section 2.1 we can associate to (38) an N -interacting particle
system {ζn ; n ≥ 0} which is a Markov chain in EN with transitions

IP (ζn+1 ∈ dx |ζn = y ) =
N∏

p=1

Φ̂n+1

(
1
N

N∑

i=1

δyi

)
(dxp), n ≥ 0

and initial law η̂0 = Ψ(η0), where as usual dx
def= dx1 × · · · × dxN

is an infinitesimal neighborhood of the point x = (x1, . . . , xN ) ∈ EN ,
y = (y1, . . . , yN) ∈ EN . Arguing as in section 2.1 it is transparent that
this transition is decomposed into two separate mechanisms, namely
for each n ≥ 0

ζn
def.=

(
ζ1
n, . . . , ζN

n

) Selection
−−−−−−−→ ζ̂n

def.=
(
ζ̂1
n, . . . , ζ̂N

n

) Mutation
−−−−−−−→ ζn+1.

The selection transition is now defined by

IP
(
ζ̂n ∈ dx |ζn = y

)
=

N∏

p=1

N∑

i=1

ĝn(yi)
∑N

j=1 ĝn(yj)
δyi(dxp)
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and the mutation step

IP
(
ζn+1 ∈ dx

∣∣∣ζ̂n = y
)

=
N∏

p=1

K̂n+1 (yp, dxp)

We emphasize that in contrast to the latter genetic model this genetic
particle scheme involves mutation transitions that depend on the fit-
ness functions. The study of this variant has been initiated in [27],
large population asymptotic are described in [24] and [20].

5.3 Branching Genetic-type Algorithms

We end this section with a brief description of branching and genetic-
type variants presented in [20]. Here again we place ourselves in the
abstract setting of section 2 and section 3.

All these branching strategies are based on the same natural idea.
Namely, how to approximate an updated empirical measure of the
following form

Ψn

(
1
N

N∑

i=1

δξi
n

)
=

N∑

i=1

gn(ξi
n)

∑N
j=1 gn(ξj

n)
δξi

n
(39)

by a new probability measure with atoms of size integers multiples of
1/N? In the genetic algorithm presented in section 2.1 this approxi-
mation is done by sampling N -independent random variables

{ξ̂i
n ; 1 ≤ i ≤ N}

with common law (39) and the corresponding approximating measure
is given by

1
N

N∑

i=1

δξ̂i
n

=
N∑

i=1

M i
n

N
δξi

n

where
(
M1

n, . . . , MN
n

) def.= Multinomial
(
N, W 1

n , . . . , WN
n

)

and for any 1 ≤ i ≤ N

W i
n

def.=
gn(ξi

n)
∑N

j=1 gn(ξj
n)

Using these notations the random and IN-valued random variables
(
M1

n, . . . , MN
n

)

35



can be regarded as random numbers of offsprings created at the posi-
tions (ξ1n, . . . , ξN

n ). The above question is strongly related to weighted
bootstrap and genetic algorithms theory (see for instance [4] and refer-
ences therein). In this connection the above multinomial approximat-
ing strategy can be viewed as a Weighted Efron bootstrap.

Let us present several examples of branching laws The first one is
known as the Remainder Stochastic Sampling in genetic algorithms lit-
erature. It has been presented for the first time in [2, 3]. From a pure
practical point of view this sampling technique seems to be the more
efficient since it is extremely time saving and if the branching particle
model is only based on this branching selection scheme then the size
of the system remains constant.

In what follows we denote by [a] (resp. {a} = a − [a]) the integer
part (resp. the fractional part) of a ∈ IR.

1. Remainder Stochastic Sampling
At each time n ≥ 0, each particle ξi

n branches directly into a fixed
number of offsprings

M
i
n

def.= [NW i
n] ∀1 ≤ i ≤ N

so that the intermediate population consists of Nn
def.=

∑N
i=1 M

i
n

particles. To prevent extinction and to keep the size of the sys-
tem fixed it is convenient to introduce in this population Ñn

additional particles with

Ñn
def.= N − Nn =

N∑

i=1

NW i
n −

N∑

i=1

[NW i
n] =

N∑

i=1

{NW i
n}

One natural way to do this is to introduce the additional sequence
of branching numbers
(
M̃1

n, . . . , M̃N
n

)

def.= Multinomial

(
Ñn,

{NW 1
n}∑N

j=1 {NW j
n}

, . . . ,
{NWN

n }
∑N

j=1 {NW j
n}

)

(40)

More precisely, if each particle ξi
n again produce a number of M̃ i

n

additional offsprings, 1 ≤ i ≤ N , then the total size of the system
is kept constant.
At the end of this stage, the particle system ξ̂n again consists of
N particles denoted by

ξ̂i
n = ξk

n
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with

1 ≤ k ≤ N,
k−1∑

l=1

M
l
n + 1 ≤ i ≤

k−1∑

l=1

M
l
n + M

k
n

and for

1 ≤ k ≤ N,
k−1∑

l=1

M̃ l
n + 1 ≤ i ≤

k−1∑

l=1

M̃ l
n + M̃k

n

ξ̂ Nn+i
n = ξk

n

The multinomial (40) can also be defined as follows

M̃k
n = Card

{
1 ≤ j ≤ Ñn ; ξ̃j

n = ξk
}

1 ≤ k ≤ N

where (ξ̃1n, . . . , ξ̃Ñn
n ) are Ñn independent random variables with

common law
N∑

i=1

{NW i
n}∑N

j=1 {NW j
n}

δξi
n

2. Independent Branching Numbers
In the next examples the branching numbers are, at each time
step, independent one of each other (conditionally on the past).
As a result the size of the population at each time n is not fixed
but random. The corresponding branching genetic type algo-
rithms can be regarded as a two step Markov chain

(Nn, ξn)
Branching
−−−−−→ (N̂n, ξ̂n)

Mutation
−−−−−→ (Nn+1, ξn+1) (41)

with product state space E =
⋃

α∈IN({α}×Eα) with the conven-
tion Eα = {7} a cemetery if α = 0. We will note

F = {Fn, F̂n : n ≥ 0}

the canonical filtration associated to (41) so that

Fn ⊂ F̂n ⊂ Fn+1

(a) Bernoulli branching numbers
The Bernoulli branching numbers were introduced in [11]
and further developed in [12]. They are defined as a sequence
Mn = (M i

n, 1 ≤ i ≤ Nn) of conditionally independent ran-
dom numbers with respect to Fn with distribution given for
any 1 ≤ i ≤ Nn by

P (M i
n = k|Fn) =

{
{NnW i

n} if k = [NnW i
n] + 1

1 − {NnW i
n} if k = [NnW i

n]
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In addition it can be seen from the relation

Nn∑

i=1

(NnW i
n) = Nn

that at least one particle has one offspring (cf. [11] for more
details).
Therefore using the above branching correction the particle
system never dies.

It is also worth observing that the Bernouilli branching num-
bers are defined as in the Remainder Stochastic Sampling by
replacing the multinomial remainder branching law (40) by
a sequence of Nn independent Bernouilli random variables(
M̃1

n, . . . , M̃Nn
n

)
given by

P (M̃Nn
i = 1|Fn) = 1 − P (M̃Nn

i = 0|Fn) = {NnW i
n}

(b) Poisson branching numbers:
The Poisson branching numbers are defined as a sequence
Mn = (M i

n, 1 ≤ i ≤ Nn) of conditionally independent ran-
dom numbers with respect to Fn with distribution given for
any 1 ≤ i ≤ Nn by

∀k ≥ 0 P (M i
n = k|Fn) = exp (−NnW i

n)
(NnW i

n)k

k!

(c) Binomial branching numbers:

The binomial branching numbers are defined as a sequence
Mn = (M i

n, 1 ≤ i ≤ Nn) of conditionally independent ran-
dom numbers with respect to Fn with distribution given for
any 1 ≤ i ≤ Nn by

P (M i
n = k|Fn) =

(
Nn

k

)
(W i

n)k (1 − W i
n)Nn−k

for any 0 ≤ k ≤ Nn

The previous models are described in full details in [12]. In partic-
ular it is shown that the genetic algorithm with multinomial branching
laws arises by conditioning a genetic algorithm with Poisson branching
laws.
The law of large numbers and large deviations for the genetic model
with Bernouilli branching laws are studied in [12] and [14]. The con-
vergence analysis of these particle approximating schemes is still in
progress.
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6 Continuous time Genetic Algorithms

We shall now describe the continuous time version of the genetic algo-
rithm discussed in section 2. This particle algorithm has been intro-
duced in [23] for solving a flow of distributions defined by the ratio

ηt(f) =
γt(f)
γt(1)

∀f ∈ Bb(E) t ∈ IR+ (42)

where γt(f) is defined through a Feynman-Kac formula of the following
form

γt(f) = IE
(

f(Xt) exp
(∫ t

0
Us(Xs) ds

))

where {Xt ; t ∈ IR+} is a càdlàg and time in-homogeneous Markov
process taking values in a Polish space E and {Ut ; t ∈ IR+} is a mea-
surable collection of locally bounded (in time) and measurable non-
negative functions. Here we merely content ourselves in describing the
mathematical models of such particle numerical schemes. The detailed
convergence analysis as the size of the system tends to infinity can be
founded in [20] or [23]. In order to illustrate the idea in a simple form
we will also make the sanguine assumption that X is a time homoge-
neous Markov process with initial law η0, its infinitesimal generator is
a bounded linear operator on the set on bounded Borel test functions
Bb(E) and Ut = U is a time homogeneous function. The interested
reader is referred to [20] for a more general presentation including Rie-
mannian or Euclidean diffusions X .

To motivate our work we also mention that the Feynman-Kac model
(42) has different interpretations coming from quite distinct research
areas. Firstly it can be regarded as the distributions of a random par-
ticle X killed at a given rate and conditioned by non-extinction (see
for instance [48]). Secondly the previous Feynman-Kac formula may
serve to model the robust version of the optimal filter in non linear
filtering settings (see [20] and [23]). Finally, as pointed out in [20], the
ratio distributions (42) can also be regarded as the solution flow of a
simple generalized and spatially homogeneous Boltzmann equation as
defined in [36, 44].

As for the discrete time models discussed in section 2.1 and section 3
one of the best way to define the genetic particle approximating models
of (42) is through the dynamical structure of (42). By definition one
can easily check that for any bounded Borel test function f ∈ Bb(E)

d

dt
ηt(f) = ηt(L(f)) + ηt(fU) − ηt(f)ηt(U) = ηt(Lηt(f)) (43)
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where Lη, for any fixed distribution η on E, is the bounded linear
operator on Bb(E) defined by

Lη(f)(x) = L(f)(x) +
∫

(f(z) − f(x)) U(z) η(dz) (44)

As its discrete time analogue (20), we want to solve a nonlinear and
measure valued dynamical system (43) and the associate generator Lη

is decomposed into two separate generators.

To highlight the quadratic nature of (43) and the connections with
spatially homogeneous Boltzmann equations we also notice that (43)
can be rewritten as

d

dt
ηt(f) = ηt(L(f))

+
1
2

∫
ηt(dx) ηt(dy)

× ((f(x") − f(x)) + (f(y") − f(y))) Q (x, y; dx", dy")

with
Q (x, y; .) = U(y) δ(y,y) + U(x) δ(x,x)

In the first section 6.1 we discuss a Moran-type particle approximation
of the Feynman-Kac formula (42). In section 6.1.2 we also give an
illustration of the semi-group techniques introduced in [20] for proving
useful convergence results as the size of the population tends to in-
finity including central limit theorem and exponential bounds. In the
final section 6.2 we propose a branching and interacting particle ap-
proximating scheme. To the best of our knowledge this branching-type
particle approximation of the Feynman-Kac formula (42) has not been
covered in the literature. We will also give the connections between
this particle scheme and the previous Moran particle model.

6.1 A Moran Particle Model

6.1.1 Description of the Model

As traditionally, starting from a family {Lη ; η ∈ M1(E)} , we consider
an interacting N -particle system (ξt)t≥0 = ((ξ1t , . . . , ξN

t ))t≥0, which is
Markov process on the product space EN , N ≥ 1, whose infinitesimal
generator acts on bounded Borel functions f : EN → IR by setting for
any x = (x1, . . . , xN ) ∈ EN

L(f)(x) =
N∑

i=1

L(i)
m(x)(f)(x) with m(x) def.=

1
N

N∑

i=1

δxi
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and where the notation G(i) have been used instead of G when an
operator G on Bb(E) acts on the i-th variable of f(x1, . . . , xN ). This
abstract and general formulation is well known in mean field interacting
particle system literature (the interested reader is for instance referred
to [44] and [50] and references therein).
Taking into consideration the definition (44) we get

L = L̃ + L̂ (45)

where

L̃(f)(x) =
N∑

i=1

L(i)(f)(x)

and

L̂(f)(x) =
N∑

i=1

N∑

j=1

(
f(x(i,j)) − f(x)

) 1
N

U(xj)

and where for 1 ≤ i, j ≤ N and x = (x1, · · · , xN ) ∈ EN , x(i,j) is the
element of EN given by

∀ 1 ≤ k ≤ N, x(i,j)
k =

{
xk , if k /= i
xj , if k = i

In order to describe more explicitly the time evolution of the EN -
valued Markov process {ξt ; t ≥ 0} with infinitesimal generator L it is
convenient to write (45) as follows

L(f)(x) = L̃(f)(x) + λ(x)
∫

EN

(f(y) − f(x)) Q(x, dy)

= L̃(f)(x) + λ̂

∫

EN

(f(y) − f(x)) Q̂(x, dy) (46)

with

λ(x) =
N∑

i=1

U(xi) = N m(x)(U) and λ̂ = N ‖U‖

and

Q(x, dy) =
N∑

i,j=1

1
N

U(xi)∑N
k=1 U(xk)

δx(i,j)(dy)

Q̂(x, dy) =
(

1 − m(x)
(

U

‖U‖

))
δx(dy) + m(x)

(
U

‖U‖

)
Q(x, dy)

The construction of {ξt ; t ≥ 0} on an explicit probability space is
now classical (see for instance [23] or [31]). For the convenience of the
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reader we propose a basic construction based on the second decompo-
sition (46).

Let {X(k,i)(a) ; (k, i) ∈ IN2, a ∈ E} be a collection of independent
copies of {X(a) ; a ∈ E} where for any a ∈ E, X(a) denotes the
process X starting at a. Let {Tk ; k ∈ IN} (T0 = 0) be a sequence of
independent and identically distributed random variables on IR+ with
common exponential law with parameter N ‖U‖.

The random times {Tk ; k ∈ IN} (T0 = 0) will be regarded as the
random dates at which competitive interaction occurs. The initial
particle system ξ0 = (ξ10 , . . . , ξN

0 ) consists of N independent random
variables with common law η0.

1. Mutation :
Between the dates Tk−1 and Tk the particles evolve randomly
and independently according the law of the time-inhomogeneous
Markov process X . That is for any 1 ≤ i ≤ N

ξi
t = X(k,i)

t−Tk−1

(
ξi
Tk−1

)
, ∀t ∈ [Tk−1, Tk[ k ≥ 1

2. Competitive Selection :
At the time t = Tk, ξTk = (ξ1Tk

, . . . , ξN
Tk

) is an EN -valued random
variable with law Q̂

(
ξTk− , .).

The important difference between this Moran-type particle model and
the classical one is that for the former N -particles system, the total
rate of selection jumps λ̂ is of order N , while for the classical N- parti-
cle Moran model it is of order N2. It is that difference of scaling, with
comparatively less frequent selections, which enables us to end up with
a deterministic process in the limit.

Furthermore, even if we would have multiplied by N the rate of selec-
tion, the limit exists (as a right continuous measure valued stochastic
process) only if the weight of replacing the particle ξi

t by the particle
ξj
t is symmetrical in ξi

t and ξj
t , condition which is not satisfied here,

since due to the fitness functions, its value is Ut(ξj
t )/N . In our case

more frequent selections would oblige the limit measure-valued pro-
cess to jump instantaneously from a probability to another one better
suited for the maximization of U . In fact, an asymmetrical weighted
sampling needs a selection total rate of order N (this can be deduced
from the calculations given in the section 5.7.8 of [15]), if one wants
to end up with a bounded selection generator. Then one can add the
natural non-weighted sampling selection (cf. section 2.5 of [15], or more
generally, any other symmetrical weighted sampling selection) with a
total rate of order N2, to obtain in the limit a Fleming-Viot process
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with selection, as it is defined directly in the level of measure valued
process (and not at the particles system approximation level) in the
section 10.1.1 of [15] (or more generally p. 175 of this review).

6.1.2 Asymptotic Behavior

The interpretation of the distribution flow {ηt ; t ≥ 0} in terms of the
limit of the empirical measures

ηN
t

def.=
1
N

N∑

i=1

δξi
t

(47)

as N → ∞ is given in [20, 23] including central limit theorem and
exponential bounds, see also [36, 44] for an alternative approach using
coupling techniques. To see that (47) is a reasonable approximation of
ηt observe that for any bounded Borel function ϕ ∈ Bb(E) if

f(x1, . . . , xN ) def.=
1
N

N∑

i=1

ϕ(xi)

then for any x = (x1, . . . , xN ) ∈ EN

L(f)(x) = m(x)
(
Lm(x)(ϕ)

)

Our aim is now to give some comments on the semi-group approach
presented in [20] to study the asymptotic behavior of ηN

t as the popu-
lation size N tends to infinity.
Under our assumption it is well known (see lemma 3.68, p 446 in [38])
that for any bounded Borel test function f ∈ Bb(EN ) the stochastic
process

Mt(f) def.= f(ξt) − f(ξ0) −
∫ t

0
L(f)(ξs) ds

is a square integrable martingale and its angle bracket is given by

〈M(f)〉t =
∫ t

0
Γ(f, f)(ξs) ds

where Γ is the “carré du champ” associated to L

∀f ∈ Bb(EN ), Γ(f, f) = L(f2) − 2f L(f)

Using the decomposition (45) and the definition of L̃ and L̂ it is easy
to establish that

Γ(f, f) = Γ̃(f, f) + Γ̂(f, f)

with

Γ̃(f, f) = L̃(f2) − 2f L̃(f) Γ̂(f, f) = L̂(f2) − 2f L̂(f)
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and if f ∈ Bb(EN ) is chosen so that

f(x) = m(x)(ϕ)

for some ϕ ∈ Bb(E) then

Γ̃(f, f)(x) =
1
N

m(x) (ΓL(ϕ,ϕ)) ,

with
ΓL(ϕ,ϕ) = L(ϕ2) − 2ϕ L(ϕ)

and

Γ̂(f, f)(x) =
1
N

m(x)
(
(ϕ− m(x)(ϕ))2 (U + m(x)(U))

)

Using these notations one concludes that

dηN
t (ϕ) = ηN

t (LηN
t

(ϕ)) dt + dMt(f)

with
|〈M(f)〉t| ≤

Ct

N
‖ϕ‖2, Ct < ∞ ∀t ≥ 0

One can use this result to check that the sequence of distributions
{ηN

t ; t ≥ 0} is weakly compact and any weak limit point is concen-
trated on the set of solutions of (43). Using the continuity of the angle
bracket and the construction of ξt one can check that there exists some
finite constant C′

t < ∞ such that the jumps ∆Mt(f) of the previously
defined martingale are bounded by C′

t‖ϕ‖/N , that is IP-a.s.

|∆Mt(f)| ≤ C′
t

N
‖ϕ‖

Let us recall a classical exponential inequality for martingales Mt start-
ing at 0 and whose jumps are bounded uniformly by a ∈]0,∞[: for all

0 < ε ≤ b

a
and t > 0

IP

(
sup

s∈[0,t]
|Ms| > ε , 〈M〉t ≤ b

)
≤ 2 exp− ε2

4b
(48)

This inequality may be established using calculations from the sec-
tion 4.13 of [43] (see corollary 3.3 in [47]). Now, if we apply this
inequality to the martingale Mt(f) one obtain the following result

Proposition 6.1 For any bounded Borel test function ϕ ∈ Bb(E) and
T > 0 and 0 < ε ≤ ‖ϕ‖ we have that

IP
(
supt∈[0,T ] |ηN

t (ϕ) − ηN
0 (ϕ) −

∫ t
0 ηN

s (LηN
s

(ϕ)) ds| > ε
)

≤ 2 exp− Nε2

C(t)‖ϕ‖2

for some finite constant C(t) < ∞.
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To get some more precise estimates we proceed as in discrete time
settings. We start by noting that

γt(1) = exp
∫ t

0
ηs(U) ds

and therefore for any ϕ ∈ Bb(E)

γt(ϕ) = ηt(ϕ) exp
∫ t

0
ηs(U) ds

As in section 3 we introduce the N -approximating measures

γN
t (ϕ) def.= ηN

t (ϕ) exp
∫ t

0
ηN

s (U) ds

On the other hand using the Markovian property of X we observe the
simple but essential fact that

γt(ϕ) = γs(Kt−s(ϕ))

where {Kτ ; τ ≥ 0} is the semi-group defined by

∀ϕ ∈ Bb(E), (Kτ (ϕ))(x) = IE
(
ϕ (Xτ (x)) exp

∫ τ

0
U(Xs(x)) ds

)

where {Xτ (x) ; τ ≥ 0} is the time homogeneous Markov process with
infinitesimal generator L and starting at x ∈ E. From this simple
observation one concludes that for any fixed T > 0 and for any t ∈
[0, T ], x ∈ E and ϕ ∈ Bb(E)

d

dt
(KT−t(ϕ))(x) = −L(KT−t(ϕ))(x) − U(x) (KT−t(ϕ))(x)

By definition of γN
t (1) and using the same kind of arguments as before

one can check that the stochastic process

Mt(ϕ, T ) def.=
√

N
(
γN

t (KT−t(ϕ)) − γN
0 (KT (ϕ))

)
, 0 ≤ t ≤ T

is a martingale and its angle bracket is given by

〈M(ϕ, T )〉t

=
∫ t

0
γN

s (1)
{
ηN

s (ΓL(KT−s(ϕ), KT−s(ϕ))) +

ηN
s

((
KT−s(ϕ) − ηN

s (KT−s(ϕ))
)2 (

U + ηN
s (U)

))}
ds

(49)
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Recalling that γt(KT−t(ϕ)) = γT (ϕ) = γ0(KT (ϕ)) and γN
0 = ηN

0 ,
γ0 = η0 one concludes that

γN
t (KT−t(ϕ)) − γt (KT−t(ϕ))

= ηN
0 (KT (ϕ)) − η0 (KT (ϕ)) +

1√
N

Mt(ϕ, T )

¿From which it becomes clear that

Proposition 6.2 For any N ≥ 1 and for any bounded Borel test func-
tion ϕ ∈ Bb(E) we have that

IE
(
γN

T (ϕ)
)

= γT (ϕ)

and

IE
((
γN

T (ϕ) − γT (ϕ)
)2)1/2

≤ CT√
N

‖ϕ‖ (50)

for some finite constant CT which do not depend on the test function.

Using the same line of arguments as the one we used in discrete time
settings (see section 3) it is possible to obtain central limit theorems
for the N -approximating measures γN

T and ηN
T as well as errors bounds

for the total variation distance. For instance using the decomposition

ηN
T (ϕ) − ηT (ϕ) =

γN
T (ϕ)
γN

T (1)
− γT (ϕ)
γT (1)

=
1

γT (1)
((
γN

T (ϕ) − γT (ϕ)
)

+ ηN
T (ϕ)

(
γT (1) − γN

T (1)
)) (51)

and (50) one gets the following result.

Proposition 6.3 For any N ≥ 1 and for any bounded Borel test func-
tion ϕ ∈ Bb(E)

IE
((
ηN

T (ϕ) − ηT (ϕ)
)2)1/2

≤ CT√
N

‖ϕ‖

for some finite constant CT which do not depend on the test function.

Using the decomposition (51) and proposition 6.2 one obtain that

IE
(
ηN

T (ϕ)
)
− ηT (ϕ) = IE

(
ηN

T (ϕ)
(

1 − γN
T (1)
γT (1)

))

= IE
( (

ηN
T (ϕ) − ηT (ϕ)

) (
1 − γN

T (1)
γT (1)

))

Thus, a simple application of Cauchy-Schwartz’s inequality yields that
for any test function ϕ, ‖ϕ‖ ≤ 1,

∣∣IE
(
ηN

T (ϕ)
)
− ηT (ϕ)

∣∣ ≤ CT

N
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for some finite constant CT which only depends on the time parameter
T . By exchangeability of the particles and the definition of the total
variation distance of probability measures this implies that

‖Law(ξi
t) − ηt‖tv ≤ CT

N

Finally, as the form of the angle bracket (49) indicates one can prove
the following result

Theorem 6.4 ([20]) The sequence of random fields

UN
T (f) def.=

√
N
(
γN

T (f) − γT (f)
)
, f ∈ Bb(E)

converges in law as N → ∞, in the sense of finite distributions, to a
centered Gaussian field {Un(f) ; f ∈ Bb(E)} satisfying

IE
(
UT (f)2

)
= η0

(
(KT (ϕ) − η0(KT (ϕ)))2

)

+
∫ t

0
γs(1) {ηs (ΓL(KT−s(ϕ), KT−s(ϕ)))

+ ηs

(
(KT−s(ϕ) − ηs(KT−s(ϕ)))2 (U + ηs(U))

)}
ds

Arguing as in discrete time settings the previous fluctuation result
implies that the sequence of random fields

WN
T (f) def.=

√
N
(
ηN

T (f) − ηT (f)
)
, f ∈ Bb(E)

converges in law as N → ∞ to the centered Gaussian field

WT (f) def.= UT

(
1

γT (1)
(f − ηT (f))

)
, f ∈ Bb(E)

Finally, setting

Mt(T,ϕ) def.= γN
t (KT−t(ϕ)) − γN

0 (KT (ϕ)), 0 ≤ t ≤ T

and using the same reasoning as before one can prove that for any
0 ≤ t ≤ T

| < M(T,ϕ) >t | ≤
1
N

CT ‖ϕ‖2 and |∆Mt(T,ϕ)| ≤ 1
N

CT ‖ϕ‖

for some finite constant CT < ∞. Thus the exponential bound (48)
implies that for any 0 < ε ≤ ‖ϕ‖

IP

(
sup

t∈[0,T ]
|γN

t (KT−t(ϕ)) − γN
0 (KT (ϕ))| > ε

)
≤ 2 exp− Nε2

C(T )‖ϕ‖2
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for some finite constant C(T ) < ∞. On the other hand, using Hoeffd-
ing’s inequality we have that

IP
(
|γN

0 (KT (ϕ)) − γ0(KT (ϕ))| > ε
)
≤ 2 exp− Nε2

C′(T )‖ϕ‖2

for some finite constant C′(T ) < ∞. If we combine these two bounds
one concludes that

IP
(
supt∈[0,T ] |γN

t (KT−t(ϕ)) − γt(KT−t(ϕ))| > ε
)

≤ 4 exp− Nε2

max(C(T ), C′(T ))‖ϕ‖2

and therefore

IP
(
|ηN

t (ϕ) − ηt(ϕ)| > ε
)
≤ 4 exp− Nε2

C′′(T )‖ϕ‖2

for some finite constant C′′(T ) < ∞.

Uniform convergence results are developed in [20, 22]. These papers
provide various stability conditions on the process X underwhich one
can find (as in discrete time settings, see page 23) some coefficient
α ∈ (0, 1/2) such that for any 1 ≤ i ≤ N

sup
t≥0

‖Law(ξi
t) − ηt‖tv ≤ C

Nα
, C < ∞

and, for any bounded Borel test function f , ‖f‖ ≤ 1,

∀p ≥ 1 sup
t≥0

IE
(∣∣ηN

t (f) − ηt(f)
∣∣p
)1/p

≤ c(p)
Nα

for some constant c(p) < ∞ which only depends on the parameter p.

6.2 A Branching Particle Model

We end this paper with a presentation of a novel genetic type model
based on branching selection transitions. To our knowledge this model
has not been covered by the literature and its convergence analysis is
still in progress. We also believe that the semi-group approach pre-
sented in [20] applies to study the convergence of this branching algo-
rithm to the distributions (42).

In contrast to the previous Moran-type genetic algorithm the size of
the population here will not be necessarily fixed but random. As a
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result the corresponding branching particle system will be regarded as
a continuous time process taking values in the state space

E def.= ∪p≥0 Ep

with the convention Ep = {7} a cemetery point if p = 0. The point
7 will be isolated and by convention all bounded Borel test functions
f ∈ Bb(E − {7}) will be extended to E by setting f(7) = 0.
It will be also convenient to adjoin 7 to the state space E and we set
E+ = E ∪ {7}. Again the test functions ϕ ∈ Bb(E) will be extended
to E+ by setting ϕ(7) = 0.

The infinitesimal generator G of this branching scheme is defined by

G = G̃ + Ĝ (52)

where for any f ∈ Bb(E) and x = (x1, . . . , xp) ∈ Ep, p ≥ 1

G̃f(x) =
p∑

i=1

L(i)(f)(x)

and
Ĝf(x) = λ(x)

∫

E
(f(y) − f(x)) Q(x, dy)

with

λ(x) =
p∑

i=1

U(xi)

the transition probability kernel Q on E given by

Qf(x) =
∫

f(y) Q(x, dy)

=
1
p

p∑

i=1

∑

q≥0

{∫

E
f (x(i, q, u)) S(x, xi, du)

}
B(x, xi, q)

where
x(i, q, u) = (x1, . . . , xi−1, u, . . . , u︸ ︷︷ ︸

q times

, xi+1, . . . , xp)

and for any x ∈ E , S(x, xi, du) and B(x, xi, q) are distributions on E
and on IN. In our construction the point 7 will be an absorbing point
in the sense that if the process started at 7 it will stay in 7. Therefore
for p = 0 we will also use the convention

∑
∅ = 0 and Q(7, {7}) = 1.

With this convention if p = 0 (i.e. x = 7) we have that G̃f(7) = 0
and Ĝf(7) = 0.
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The distributions S(x, xi, du) and B(x, xi, q) will be chosen so that
the following equality holds true

1
p

p∑

i=1

B(x, xi) S(ϕ)(x, xi) =
p∑

i=1

U(xi)∑p
j=1 U(xj)

ϕ(xi) (53)

for any ϕ ∈ Bb(E) where B(x, xi) and S(ϕ)(x, xi) are defined by

B(x, xi) =
∑

q≥0

q B(x, xi, q)

and
S(ϕ)(x, xi) =

∫

E
S(x, xi, du) ϕ(u)

We now make this condition more precise by noting that if f ∈ Bb(E)
is defined for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1, by

f(x) = p.m(x)(ϕ) where m(x) =
1
p

p∑

i=1

δxi (54)

for some ϕ ∈ Bb(E) then

G(f)(x) = p.m(x)
(
Lm(x)(ϕ)

)

To see this claim we first observe that for such a bounded test function
f and for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,

Ĝ(f)(x)

= λ(x)
1
p

p∑

i=1

∑

q≥0

{∫

E
(qϕ(u) − ϕ(xi)) S(x, xi, du)

}
B(x, xi, q)

= λ(x)
1
p

p∑

i=1

∑

q≥0

(
B (x, xi)S (ϕ) (x, xi) − ϕ (xi)B (x, xi, q)

)

Using (53) one concludes that for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,

Ĝ(f)(x) =
p∑

j=1

U(xj)

(
p∑

i=1

U(xi)∑p
j=1 U(xj)

ϕ(xi) − m(x)(ϕ)

)

= p. ( m(x) (ϕU) − m(x) (ϕ) m(x)(U) )

Recalling that for any bounded test function f of the form (54) and
for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1, we have that

G̃(f)(x) =
p∑

i=1

L(i)(f)(x) =
p∑

i=1

L(ϕ)(xi) = p.m(x)(L(ϕ))
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one concludes that for any bounded test function f of the form (54)
and for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,

G(f)(x) = p. ( m(x)(L(ϕ)) + m(x) (ϕU) − m(x) (ϕ) m(x)(U) )
= p.m(x)

(
Lm(x)(ϕ)

)

Along the same line of ideas as before it is possible to construct induc-
tively the branching (with interaction) particle system with generator
G. In contrast to the previous situation the size of the population is
not necessarily fixed and it will be denoted by Nt at each time t, in
other words

ξt = (ξ1t , . . . , ξNt
t ) ∈ ENt

We also need to introduce a sequence {tk ; k ≥ 1} of independent ran-
dom variables with a common exponential law on IR+ with parameter
1. If we write {Tk ; k ≥ 0} the random times at which the competitive
branching interaction occurs the inductive description is as follows.
Initially T0 = 0 and the particle system ξ0 = (ξ10 , . . . , ξN0

0 ) consists of
N0 independent random variables with common law η0. The initial size
N0 is a non random integer and it represents the precision parameter
of the scheme.
Now we assume that we have defined the branching process up to time
Tk−1 (included) for some k ≥ 1.
If NTk−1 = 0 the particle system dies and we let Nt = 0 and ξt = 7 for
any t ≥ Tk−1. Otherwise the mutation/branching selection transition
is defined as follows.

1. Mutation :
Between the dates Tk−1 and Tk the particles evolve randomly
and independently according the law of the time-inhomogeneous
Markov process X . That is for any 1 ≤ i ≤ NTk−1

ξi
t = X(k,i)

t−Tk−1

(
ξi
Tk−1

)
∀t ∈ [Tk−1, Tk[

where Tk = Tk−1 + τk and τk is defined by setting

tk =
∫ Tk−1+τk

Tk−1

NTk−1∑

i=1

U
(
X(k,i)

s−Tk−1

(
ξi
Tk−1

)
ds
)

(recall that tk is a random variable with exponential law on IR+

with parameter 1). During this stage the size of the system re-
mains constant and we set

Nt = NTk−1 ∀t ∈ [Tk−1, Tk[

2. Competitive branching selection :
At the time t = Tk a label i is chosen uniformly on {1, . . . , NTk−1}
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and the particle with label i dies and is replaced by a random
number of offsprings qi

k with law

B
(
ξTk−, ξi

Tk−, .)

and independently, these offsprings are randomly given a location
ui

k with law
S
(
ξTk−, ξi

Tk−, .)

At the end of this stage the particle system ξTk is defined as

ξTk = (ξ1Tk−, . . . , ξi−1
Tk−, ui

k, . . . , ui
k︸ ︷︷ ︸

qi
k times

, ξi+1
Tk−, . . . , ξ

NTk−1
Tk− )

and the resulting population size is defined as

NTk =
(
NTk−1 − 1

)
+ qi

k

Let us give some examples of branching selection laws satisfying con-
dition (53). We assume that x = (x1, . . . , xp) ∈ Ep for some p ≥ 1.

1. If B (x, xi, .) and S (x, xi, .) are defined by

B (x, xi, .) = δ1

and

S (x, xi, .) =
p∑

j=1

U(xj)∑p
k=1 U(xk)

δxj (55)

then, since for any ϕ ∈ Bb(E) and 1 ≤ i ≤ p

B(x, xi) = 1 and S(ϕ)(x, xi) =
p∑

j=1

U(xj)∑p
k=1 U(xk)

ϕ(xj)

condition (53) clearly holds. This example corresponds to the
Moran-type genetic scheme presented in the previous section. In-
deed, in this situation we clearly have for any f ∈ Bb(E) and for
any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,

Ĝ(f)(x)

=

(
p∑

k=1

U(xk)

)
1
p

p∑

i=1

p∑

j=1

(
f(x(i,j)) − f(x)

) U(xj)
p∑

l=1

U(xl)

=
1
p

p∑

i=1

p∑

j=1

(
f(x(i,j)) − f(x)

)
U(xj)
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where for 1 ≤ i, j ≤ p and x = (x1, · · · , xp) ∈ Ep, x(i,j) is as
usual the element of Ep given by

∀ 1 ≤ k ≤ p, x(i,j)
k =

{
xk , if k /= i
xj , if k = i

2. If B (x, xi, .) and S (x, xi, .) are defined by

S (x, xi, .) = δxi and B(x, xi) =
p U(xi)∑p
k=1 U(xk)

(56)

then for any ϕ ∈ Bb(E) we have S(ϕ)(x, xi) = ϕ(xi) and condi-
tion (53) is again met. In this situation the size of the population
may not be fixed. To highlight the connections with the discrete
time branching schemes presented in section 5.3 the reader may
check that condition (56) holds for the Bernoulli and Poisson
branching laws

B (x, xi, .)

= (1 − {B(x, xi)}) 1[B(x,xi)]
(.) + {B(x, xi)} 1[B(x,xi)]+1(.)

and

B (x, xi, .) = e−B(x,xi)
∑

q≥0

(B(x, xi))q

q!
1q(.)

We recall that [a] (resp. {a} = a − [a]) the integer part (resp.
the fractional part) of a ∈ IR.

Now we return to the probabilistic analysis of this branching particle
model. We have study the asymptotic behavior of this scheme but the
corresponding publication still isn’t ready. For the convenience of the
reader, here we only formulate a few basic result to illustrate how the
methodology used for the Moran type genetic algorithm can be used
in this more general framework. As usually we start by noting that for
any bounded Borel test function f ∈ Bb(E) the stochastic process

Mt(f) def.= f(ξt) − f(ξ0) −
∫ t

0
G(f)(ξs) ds

is a local martingale and its angle bracket is given by

〈M(f)〉t =
∫ t

0
Γ(f, f)(ξs) ds

where Γ is the “carré du champ” associated to G

Γ(f, f) = G(f2) − 2f G(f)
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Now, using the decomposition (52) and the definition of G̃ and Ĝ one
can check that

Γ(f, f) = Γ̃(f, f) + Γ̂(f, f)

with

Γ̃(f, f) = G̃(f2) − 2f G̃(f) Γ̂(f, f) = Ĝ(f2) − 2f Ĝ(f)

If f ∈ Bb(E) is chosen so that for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,
and for some ϕ ∈ Bb(E)

f(x) = p.m(x)(ϕ) (57)

then for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1,

Γ̃(f, f)(x) = p. m(x) (ΓL(ϕ,ϕ)) ,

with
ΓL(ϕ,ϕ) = L(ϕ2) − 2ϕ (L(ϕ)),

and

Γ̂(f, f)(x) = Ĝ
(
(f(.) − f(x))2

)
(x)

= λ(x)
1
p

p∑

i=1

∑

q≥0

∫

E
(qϕ(u) − ϕ(xi))

2 S(x, xi, du) B(x, xi, q)

Let us notice that if distributions S(x, xi, du) and B(x, xi, q) are de-
fined by (55) then for any x = (x1, . . . , xp) ∈ Ep, p ≥ 1, we have
that

Γ̂(f, f)(x) = p.m(x)
(
(ϕ− m(x)(ϕ))2 (U + m(x)(U))

)

and if these distributions satisfy (56) one gets that

Γ̂(f, f)(x) = p.m(x)(U).m(x)



ϕ2
∑

q≥0

(q − 1)2 B(x, ., q)




In contrast to the previous Moran type genetic model the carré du
champ corresponding to the selection procedure is not necessarily bounded
and we need to introduce some auxiliary assumption on the mass vari-
ation of the systems, namely we will assume that

sup
x∈E

m(x)




∑

q≥0

q2 B(x, ., q)


 < ∞
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In the special case where the test function f is given by (57) we have
that the stochastic process

Nt m(ξt)(ϕ) − N0 m(ξ0)(ϕ) −
∫ t

0
Ns m(ξs)

(
Lm(ξs)ϕ

)
ds, t ≥ 0

is a square integrable martingale. Of course, if ϕ = 1 this implies that
the total mass process {Nt ; t ≥ 0} is a square integrable martingale
starting at N0.
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Nationale Supérieure de l’Aéronautique et de l’Espace, Sept. 1995.

[7] H. Carvalho, P. Del Moral, A. Monin, G. Salut, Optimal
non-linear filtering in GPS/INS Integration, IEEE Trans. on
Aerospace and Electronic Systems, Vol. 33, (3), pp. 835-850, 1997.

[8] R. Cerf (1994) Asymptotic convergence of a genetic algorithm. C.
R. Acad. Sci. Paris Sr. I Math. 319 (1994), no. 3, 271–276.

[9] R. Cerf (1996) The dynamics of mutation-selection algorithms
with large population sizes. Ann. Inst. H. Poincar Probab. Statist.
32 (1996), no. 4, 455–508.

[10] R. Cerf (1998) Asymptotic convergence of genetic algorithms.
Adv. in Appl. Probab. 30 (1998), no. 2, 521–550.

[11] D. Crisan, J. Gaines and T.J. Lyons. A Particle Approximation
of the Solution of the Kushner-Stratonovitch Equation. SIAM J.
Appl. Math. 58 (1998), no. 5, 1568–1590

55



[12] D. Crisan, P. Del Moral and T.J. Lyons. Non Linear Filtering
Using Branching and Interacting Particle Systems. To appear in
Markov Processes and Related Fields, vol.3 (1999).

[13] D. Crisan, P. Del Moral and T. Lyons, Interacting Particle Sys-
tems Approximations of the Kushner Stratonovitch Equation. To
appear in Advances in Applied Probability, vol.31, no.3, Septem-
ber 1999.

[14] D. Crisan and M. Grunwald, Large Deviation Comparison of
Branching Algorithms versus Re-sampling Algorithm. Preprint,
Imperial College, London, 1998.

[15] D. Dawson. Measure-valued Markov processes. In P.L. Hennequin,
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