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Abstract

The traditional quantification of free motions on Euclidean spaces into the Laplacian is revisited
as a complex intertwining obtained through Doob transforms with respect to complex eigenvectors.
This approach can be applied to free motions on finitely generated discrete Abelian groups: Z™,
with m € N, finite tori and their products. It leads to a proposition of Markov quantification. It is
a first attempt to give a probability-oriented interpretation of exp({L), when L is a (finite) Markov
generator and £ is a complex number of modulus 1.
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1 Introduction

Broadly speaking, quantification is the mathematical link between classical and quantum mechanics
and has led to the tremendous development of semi-classical limits, see e.g. the book of Zworski
[6] and the references therein. Usually, the underlying state spaces and dynamics are continuous,
since it is important to be able to consider high frequencies or large values in the spectrum of the
associated Hamiltonian operators, quantifying the classical energies. Nevertheless, quantification
has also been considered for discrete spaces, specially in the context of wave equations, see for
instance Macia [3, 4|, Mielke et al. |2, 5]. In general the authors also “quantify” space, by requiring
that the distance separating nearest neighbors is of the same order as the semi-classical parameter
h > 0, in some sense their results concern approximation of continuous spaces. Here we would like
to consider fixed discrete state spaces, even finite sets, e.g. just on Zs = Z/(3Z). It leads us to
propose a general definition of quantification in the context of Markov process theory and to see
that it is meaningful, at least for the simplest examples of free motions. Of course this first attempt
will have to be tested with more interesting examples, but it gives a feeling of what we are looking
for.

1.1 Definition of a Markovian quantification

Let V' be a metric space, whose distance is denoted p, endowed with a (non-negative) measure pu.
Consider a Markov generator L which is self-adjoint in 1.?(u, C), in probabilistic terminology, we
say that p is reversible for L. Functional calculus enables one to define the operator P: = exp(£L)
for any £ € C. At least for £ € C,, the set of complex numbers whose real part is non-negative, the
domain of P is the whole space L?(p, C), since the spectrum of L is included into (—c0,0]. When
L is a jump generator with bounded jump rates (in particular when V' is finite), the domain of P
is IL2(u, C) for all ¢ € C.

Let V be another topological space endowed with a continuous and onto mapping «# : V — V.
It means that V can be seen as a weak kind of bundle over V: for any y € V, denote V, := 71 (y),
it will be convenient to write the elements of V under the form (y, z), where y € V and z € V. The
base component y should be thought of as a position and the fiber component z as a generalized
speed or impulsion. A priori no assumption is made on the fibers V,, for y € V, they could
be not all the same. Let £ be a Markov generator on V such that for any (yo,z0) € V, the
martingale problem associated to £ and to the initial point (yo, zo) is well-posed. We will denote
by X = (X(s))s=0 = (Y (s), Z(5))s=0 a corresponding cadlag Markov process and Py, .y will stand
for the underlying probability measure. It is convenient to add the time as a coordinate to V: on
U := Ry x V, whose generic elements are denoted by (¢,y, z), consider the generator

& = O +L (1)

A corresponding Markov process starting from (¢, yo, 20) is X == (X(5))s=0 = (to+5,Y(s), Z(8))s>0
under P, ..y. The latter underlying probability will also be denoted P to indicate that X
is starting from (%o, o, 20) (and Py, .,) when to = 0).

We say that L is a quantification of £ if there exists a family (F})p~¢ of continuous and
bounded mappings from U x V to C satistying the three following conditions:

(H1) probability density: for any h > 0 and any (¢,y, z) € U, we have
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(H2) concentration: for any r > 0 and any compact set K < Ry x V|
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(H3) intertwining: for any (yo,20) € V, there exists £ € T, the circle of complex numbers of
modulus 1, such that,

YV h > 0 Vs> O Ve V E(O’ymZO)[Fh(}t(S);l’)] = Pﬁgs[Fh(anmZO; )](l’)

Note that the rhs is a priori only defined p-a.s. in z € V, since Py, is an operator on L2(u, C).
Nevertheless, as an immediate consequence of dominated convergence, the lhs is continuous with
respect to z € V. The meaning of the above equality is thus that there exists a continuous version
of Peys[Fr(0,%0, 20; -)] given by the lhs. In all our examples of discrete free motions, &y will in fact
only be dependent on zg.

A drawback of Assumption (H3) is its lack of stability by tensorization (except in the traditional
situation where & does not depend on (yo, z0) € V) and the following extension shall more gener-
ally be considered. We say that a commuting family (L(j )) jeg of reversible Markov generators in
L2(u,C), where J is a finite index set, is a multi-dimensional quantification of £, when there
exists a family (F})p~0 of mappings as above satisfying (H1), (H2) and

(H4) multi-dimensional intertwining: for any (o, z0) € V, there exists a family (f(()j ))je JE
T, such that,

Vh>0,Vs=0,VzelV, E(0,y0,20) [Fh(X(8);7)] = exp ( Z{ ) [Fr(0,y0, 205 )] ()
jedJ

Let us make a few comments about the definition of quantification by (H1), (H2) and (H3).
The multi-dimensional extension will be justified by Theorem 8 below and discussed at the end of
Section 5.

Remark 1 In the usual real free motion Schrodinger case recalled in Theorem 5 below, {y = i (or
& = —i) does not depend on (yo, 20) € V. Under natural assumptions, it is equivalent to the fact
that for any h > 0 and = € V, the process (F},(X(s);x))s>0 is deterministic. Indeed, for the direct
implication, note that P, is a unitary operator for any &y € iR, so we get for all h > 0, (yo, 20) € V
and s = 0,

f Payno En(0, o, 201 )] (2)? pa(de) j IFn(0, 90, 20; )| u(de)

=1
where we used (H1).

On the other hand, by Cauchy-Schwarz’ inequality, we have for any h > 0, (yo,20) € V, s = 0
and x € V,

2
IE yo,0) [FR (X(hs); 2)]|7 < By a0 [[Fn(X(hs); 2) ] (2)
so that
2
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Furthermore, Assumption (H3) implies that
Vh>0,Y (y0,20) €V, Vs =0,V 2V, [Bpy o) [Fn(X(hs);)]] = [Peons[Fn0, 30, 205 )] ()
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It follows from the above computations that we must have equality in the Cauchy-Schwarz’ in-
equality (2). This is only possible if F}(X(hs);x) is a deterministic quantity under P, ), for any
fixed h > 0, (y0,20) € V, s = 0 and x € V. We can go further and conclude that the process
X itself is deterministic, under the assumption that the family (F},)n~0 is discriminating, in the
sense that for any (t,y,2) + (¢t,9/,2") € (0,400) x V, there exist h > 0 and = € V such that
Fr(t,y,z;x) + Fp(t,y', 2'; x) (this condition will be satisfied in all our examples).

Conversely, when (Fj,(X(s);x))s>0 is deterministic, we get in (H3)

Vh>0,V (y0,20) €V, ¥Vs5=0,YVaxeV, Fr(X(hs);x) = Peons[Fr(0, 0, 20;-)](2)

Taking the square of the modulus and integrating, we deduce that

J|P€ohs[Fh(07yovzo;')](@!2 pldr) = 1

f|Fh<o,yO,zO;m>|2 u(dz)

Now assume that L is irreducible, namely its eigenvalue 0 is of multiplicity 1. Its eigenspace is
then reduced to the constant functions. Spectral calculus implies that for & ¢ iR and s,h > 0, all
the eigenvalues, except 1, of Pe ps have a modulus smaller (respectively larger) than 1 if ®(&) > 0
(resp. R(&) < 0). Thus for the above equality to hold, the mapping V' 3 x — F}(0, yo, 20; ©) must
be constant, for any h > 0 and (yo, 29) € V. Assumption (H2) then leads to a contradiction, except
in the trivial case where V' is a singleton. Thus we must have {, € (iR) n T = {+i}.

These considerations show why when V' is discrete (then X cannot be deterministic if we want
it to be Markovian), one has to consider for £ other elements of T than +i. The fact that we
imposed &y € T is just a normalization taking into account that it is always possible to multiply a
Markov generator by a positive constant: it amounts to multiply the time by the same constant.

m]

Remark 2 Let us discuss the meaning of the above quantification, in a very heuristic way. Ac-
cording to (H1) and (H2), for any s > 0 and x € V, we have for h > 0 small

|Fy (X (hs), 2)|? |Fy(hs, Y (hs), Z(hs); z)|*
X Oy (hs) (z)

and

’Fh(ov Yo, 205 )‘2 ~ 52/0

where for any y € V, §, stands for the Dirac mass at y. Taking into account the previous remark,
we “infer”, in the case where &y = i, that (H3) writes

Srn(@) = |Puslv/au)@)|

or

Pins[ /330 (@) (3)

namely, |P;xs[-]| has approximatively transported 4/dy, into dy (ns), if a sense could be given to
these expressions. More rigorously, an equality cannot hold in (3), since we would deduce that
the evolution of Y (hs), for s > 0, does not depend on zp, which is typically not true. In fact,
an important motivation for the quantification procedure is to remove the fiber components of the
evolution of (Y (hs), Z(hs))s=o0 and to include them (as “phases”) into the evolving complex-valued
distributions on V' given by the family (Pins[Fr(0,yo, 20;)])s=0- According to the interpretation of

Oy (hs)(T) =
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y and z as position and speed components, the stochastic process (Y (hs))s>o could be seen as a
second order Markov process (while (Y (hs), Z(hs))s>o is a usual, i.e. first order, Markov process).
Quantification then looks like a crazy attempt to approximate the second order Markov process
(Y (hs))s=0 by a “first order Markov process” on V' whose semi-group would be (Pjjs)s>0, puzzling
as the imaginary-valued times remain. A similar heuristic could be proposed in the case of discrete
state spaces V': then for all y € V, \/(57 = dy, interpreting the Dirac mass as a density with respect
to the counting measure (i.e. the Kronecker delta), and (3) would have to be modified into the
statement E[exp(i©(hs))dy (hs)] = Peohs[dyo], where ©(hs) is a random real phase, with ©(0) = 0.
A difference with the usual Schréodinger case is that a part of the information about the fiber
component will be transferred to the complex time, since & will depend on z.

]

Remark 3 The concentration property of (H2) is of order 1, in the sense that a concentration
of order k € Z, can be defined by requiring that for any r > 0 and any compact set K < Ry x V|

1
lim — sup J |Fy(ht,y, 2z;2)[ p(dz) = 0
h=0+ W% (1 2yew: (ty)ek Jp(a,y)>r

In the usual Schrédinger case, the concentration will even be strong, in the sense that it is of any
order k€ Z.

The order 1 is the smallest meaningful order for quantification: for fixed s > 0 and small h, the
movement of X' (hs) from X'(0) will typically be of order h (either in distance or in probability to
have jumped to a distance of order 1), because we are looking for generators £ leading to “ballistic”
behaviors, even if the associated motions are not deterministic. As a consequence, to get a pertinent
result, the concentration should be stronger than h and this is exactly what is requiring (H2). In
our simple discrete examples, we will have for A > 0 small, with the notations of (H2),

swp [ Bty ) ) = O@)
(t,y,2)eW: (t,y)eK Jp(z,y)=r

Remark 4 The above definition of quantification is not completely satisfactory, because a Markov
process on V' can be seen as its own quantification. Indeed, let be given a jump generator L on a
discrete space V. It is the quantification of £L:=L on V=V x {0} =V, by choosing £ = 1 and

Vh>0,V (t,y,0) eV, VeV, Fi(t,y,0;2) = 0yo

where the rhs is the Kronecker delta. A similar result holds on general state spaces V' and Markov
generators L, by considering a family (Fj)p~o such that |Fj(¢,y,0; l‘)|2 u(dr) is an approximation
of the Dirac mass at y and F},(t,y,0; x) is symmetrical in y,z and does not depend on ¢.

This kind of degeneracy could be avoided by requiring in (H3) that & € T\{—1, 1}, the case
& = —1 appearing for instance when L generates deterministic motions that can be reversed in
time. This prohibition of real values for &y is in the spirit of Remark 2, where we are trying
to get a probabilistic interpretation of Py, for t > 0, task which is particularly puzzling when
&0 ¢ R. Furthermore, we are looking for generators £ whose associated motions contain the smallest
possible quantity of randomness (the most ballistic, with the wording of Remark 3) and according
to Remark 1, this is reflected by the least real possible . Nevertheless, it will become apparent in
Sections 4 and 5 that real values should be allowed for &y for some (y, z9) € V.

Another drawback of the present definition of quantification, is that given the Markov gen-
erator L, there is not a unique £ to which L is the quantification, up to natural identifications.
Indeed, given a quantification, another one can be obtained by enlarging the fibers (for instance by
duplicating them).



A notion of minimal quantification up to appropriate isomorphisms is thus missing and this
minimization should concern first the real part of £y and next the size of the fibers of V.

O

In the present paper, we will investigate some simple situations of free motions: the generator £
will only act on the base component y, but in a way parametrized by the fiber component z. Thus
the fiber component will not move: for any s > 0, Z(s) = zp. This feature imposes that all the
fibers are the same, property which was not required in the general definition given above. We will
have that V =V x W, where W is another topological space, even if its topology will not play a
role when the fiber component does not move.

As already mentioned, our main goal is to define quantification on finite state spaces V. This
demand is the reason why we allow the process (X(s))s=0 to be stochastic and for the complex
number &y € T not to be necessary equal to +i, in accordance with Remark 1. In fact our initial
motivation is an inverse problem: given a finite irreducible Markov generator L, we are wondering if
we can find a “natural” dynamics to which it is a quantification. It leads to other questions that are
out of the scope of this paper, in particular because the limitations pointed out in Remark 4 have
to be overcome first: is there always a “semi-classical limit” (i.e. a corresponding minimal generator
L), is it unique? These interrogations will be interesting even for non-reversible generators, in fact,
the reversibility assumption was mainly adopted to simplify the definition of the operators exp({L),
for £ € C, but there is no such difficulty when V is finite. Here we will answer the first question
only for the usual Laplacian on a discrete multidimensional torus V = Z,, X Zy, X -+ X Zp,,,
where m € N and ny,na,...,n, € N\{1}. In future works, we hope to deal with the challenges
of adding potential energy terms or of considering general weighted graphs. This is not just for
the sake of generality: to define (stochastic) Hamiltonian dynamics on graphs whose quantification
corresponds to Metropolis algorithms is an interesting perspective in the field of optimizing and
sampling stochastic algorithms.

1.2 Results on free motions

After recalling the classical example of the free motion on R, we will present the quantification of
discrete free motions, on Z and on finite tori.

For the free motion on R, we take V := R endowed with the Laplacian L = 6. The fiber space
W is also equal to R and we consider the operator £ = 220, actingon V x W = R2. We have
Theorem 5 The generator L is a quantification of L and in (H3), & = i is independent of (yo, 20)-

Here is our first example of quantification of a discrete free motion. Take V' = Z endowed with
the generator L acting on bounded functions f on Z via

VeeZ,  LIfl@) = fla+1)+ fl@—1)—2f() (4)

The fiber space is W = [—m,7) and we consider the operator £ acting on bounded functions f
defined on Z x [—m, ) by

V(y,2)eZx[-mm),  L[fl(y,2) = 2[sin(2)| (f(y +sign(z),2) — f(y,2) (5)
where sign(z) := 1 when z > 0 and sign(z) = —1 when z < 0.
We have

Theorem 6 The generator L is a quantification of L and in (H3), & = iexp(—i|z]|).

Our second example of quantification of a discrete free motion is on the finite circle Z,,, where
n € N\{1}. Consider on Z, the discrete Laplacian L, equally given by (4) for x € Z,,. The fiber
space is now

W, = 2%[[0,71—1]] (6)
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and we consider the operator £ acting on any function f defined on the finite set Z,, x W, via (5),
where (y, z) € Z,, x W,,. In this context, Theorem 6 is valid, apparently without amendment, but
the domains of the operators are not the same:

Theorem 7 The generator L is a quantification of L and in (H3), & = iexp(—i|z|).

To see the interest of (H4), we now come to a “multi-dimensional” example. We take V =
Ly X Ly X -+ X Ly, , where m € N and ny,no,...,nm € N\{1}. Let J = [m] = {1,2,...,m} and
for j € J, consider the generator L) acting on functions f defined on V via

VaeV, LO[fl(x) = fla+e)+ fla—e;)—2f(x)

where e; is the element of V' whose coordinates are all 0, except the j-th one equal to 1 € Zj,;. Let
W =Wy, x Wy, x---x W, where the factor spaces are defined as in (6). Consider the operator
L acting on functions f defined on V x W via

V(y,2)eVxW,  LIfl(y,z) = 2 Isin(z)|(f(y +sign(z;),2) — f(y,2)
jed

where (21, 22, ..., 2 ) are the coordinates of a generic element z € W.
The following result can be deduced from Theorem 7 by tensorization.

Theorem 8 The family of generators (L(j))jgj is a multi-dimensional quantification of L and in
(H4), {éj) = iexp(—i|z;|), for all j e J.

All these results will be in proven in the same manner, via an intertwining using complex
kernels. It will also be applied to the free motion on the circle V, seen as R/(27Z), endowed with
the Laplacian L = 0%. The fiber space is now Z and we consider the operator £ = 220, acting on
V x W =R/(27Z) x Z. Theorem 5 is valid in this context:

Theorem 9 The generator L is a quantification of L and in (H3), & = i is independent of (yo, 20)-

The discreteness of the fiber space Z is now quite suspect and we are wondering if Theorem 9 is
true with the same operator £ but with W = R (V' x W should then be seen as the cotangent space
of the circle). If it is not, it would mean that our definition of quantification is too strict: in (H3)
and (H4), the equality should be required only up to additive terms negligible with respect to h, as
in (H2). In the present paper, we fostered the investigation of the perfect intertwinings (H3) and
(H4), valid for all times.

The plan of the paper is as follows. The next section presents our intertwining method: it
is based on a Doob transform with respect to complex valued eigenvectors which do not vanish.
Sections 3 and 4 treat of the free motions on R and Z, respectively. The last section deal with the
cases of tori. We will also see that there is no difficulty in tensorizing Theorems 5 and 9 and that
the tensorization of Theorem 6 can be done as in Theorem 8.

2 An intertwining relation

Here the intertwining relation at the base of the construction of the family (F})p~0 is deduced via
a Doob transformation applied with complex-valued eigenfunctions, contrary to the usual ground
state transforms, which are usually considered relatively to positive eigenvectors. The framework is
a little more general than in Subsection 1.1, since reversibility is not required, nor even invariance
with respect to a measure pu.

On a state space V, consider a Markov generator L + 0 defined as an endomorphism on a
unitary algebra A of C-valued functions. Let ¢ € A be an eigenvector of L associated to an



eigenvalue A € C (in the applications of the following sections, we will only consider reversible L
with real eigenvalues, nevertheless, it will be convenient to deal with C-valued functions). Assume
that ¢ does not vanish on V and that ¢~! € A, to be able to consider the Doob transform of L
by ¢, acting on A:

~

I ;LM Y (7)

Assume that we can find x,¢ € T (the circle of complex numbers of modulus 1) and a Markov
generator L : A — A, such that

L = yL+<(L (8)

Remark 10 In general such a decomposition is not unique, as we will see in Remarks 15 and 17
of the next sections.
m)

Suppose furthermore that L and L commute. This assumption is very strong, but will be
satisfied by our free motion examples. In more general situations, as those mentioned at the end
of Subsection 1.1, some commutation relations will enter into play, we hope to investigate them in
future works.

In the introduction, P, stood for exp(nL) for n € C and we would like to define similarly 1377
and ]377. In the present framework, the meaning of the exponential is not so clear. Not wanting to
obscure the simplicity of the following arguments, let us first assume that A is a Banach algebra
and that L is a bounded operator on A. With these hypotheses, P, ]577 and ]377 are naturally defined
as exponentials for any n € C. These assumptions hold when V is a finite set and A is the space
of all C-valued functions on V. For a more general set of hypotheses, see Remark 13 below. The
interest of the previous operators is:

Lemma 11 For any n,n' € C, we have the intertwining relation
Py P

—C(n+n') Pz Pey

where & = —Cx.

Proof
Since L = xL + Cf/, and L and L commute, we have

VneC, P, = PPy

It follows that for any n,n € C

By —Cn+n)  — By P_n) Pe )
= anpﬁnpin/
= P_ ’npfn/

The above constructions depend on the choice of ¢, but only up to a factor and it is tempting to
parametrize them by the eigenvalue A. Its multiplicity, as well as the possible choices of y, ¢ and L
mentioned in Remark 10, have to be taken into account. It leads us to consider W a parametrization
of a multiset of eigenvalues of L to which we can associate non-vanishing eigenvectors ¢ as above
(it seems preferable for the corresponding eigenvectors to be independent in case of multiplicity).
As in the introduction, define U := R, x V x W, whose generic elements are denoted (t,y,z). By



definition, to each z € W, we associate an eigenvector ¢,, an eigenvalue A, but also the complex
numbers x., (., &, the generator L., etc. Consider the Markovian generator £ given on 2, the
unitary algebra of mappings on 2 which are C! in ¢ and belong to A as function of y, by

€ = & +1L. (9)

In this formula, the variable z enters in the definition of ZALZ, which is acting on y. Note that the
variable z is not modified by the dynamic generated by £. With the notations of the introduction,
the generator £ is just L., so that (1) is valid.

The algebra 2 is not preserved by £, anyway, for any s > 0, there is no difficulty to define
Ps = exp(sL) on A directly via

~

VEeA VY (ty2) e, P[Flt,y,2) = Pos[F(t+s,-2)](y) (10)

where ]32,8 = exp(siz), similar notations will be used below.
Define the operator R from U to V through

~

V(ty,z) e,V fed  R[fI(ty,z) = P, _z,[f1v)

exp(\.(at)
= ———=P 7. |o.flly 11
POlp i) (D
where we used (7), which implies that
~ exp(—nA.
vnec, Byl = CPEpp

Pz

Lemma 11 can be partially rewritten under the form:

Lemma 12 We have
VseRy, PsR = RPg
This relation is equivalent to the generator intertwining

SR = ¢RL

Proof

Consider a test function F' € 2(. It follows from (10) that for any test function f on U, any s € R
and any (¢,y, z) € U, we have

msR[f](t’yv Z) = %z,s[}j[f](t"_s"vz)](y)
P, s [Pz,—@(t-s-s) [f1(w)
= (ﬁzﬁﬁz,—fz(t-&-s))[‘f](y)

On the other hand, we compute that

~

RPes[f1(ty,2) = P, g4l Pes[f11(y)

~

= (P, —c.Fes)f](y)

so the first announced equality is a direct consequence of Lemma 11.
The second equality is obtained by differentiation with respect to s at 0. Conversely, the first

equality is recovered from the second one by integration.
[



Remark 13 The assumptions made before Lemma 11 are too strong, e.g. to deal with the classical
free motion Schrédinger equation, but they can be relaxed at the expense of further notations. Let
B be a Banach space of functions defined on V' and containing A n B as a dense subset. Let C' = C
be a cone containing Ry and (P,),ec be a family of continuous operators on B such that for any
n € C, (Ps)s=0 is the semi-group associated to the pregenerator nL (actlng on An B) in the

sense of Hille-Yoshida. Make the same hypotheses for L and L to get B, B C, C’ (P ) el and

(ﬁn)ne@' Assume that B= B =B, C = C = xC, C  C and —CC c C. Then Lemmas 11 and

12 are satisfied up to appropriate quantifications, for instance the statement of Lemma 11 requires
/

n,n € C.

The operator R will be important to construct the family of functions (Fj)p~o presented in the
introduction. More precisely, for any h > 0 and (y,z) € V x W, we will find an appropriate function
fny,» € A, concentrating around yg for A > 0 small and Fj, will be defined by

v (t,y,z) € Q]a Vaoe ‘/7 Fh(taya zZ3 l’) = R[fh,y,z](taxvz) (12)

Before investigating more precisely these functions in the examples of the following sections, let
us come back to the decomposition (8). The carré du champs I associated to L is the bilinear
functional on A x A defined by

We compute that for any f € A,
Llf] =
(fL{¢] + oL[f]1 + Tle, f] = Aef)

where

Thus the decomposition (8) is equivalent to
L = (x—1)L+¢(L (13)

This alternative writing is particularly important when L is a diffusion generator. A Markov
generator L is of diffusion type when A is stable by composition with smooth mappings F' : R —> R
and that

F”(f)

VfeA  L[Fof] = F(fLIfl+ LLf, f]

In this context, recall that an operator K defined on A is a derivation when
Vfed  K[Fof] = F(f)K[f]
The following result is well-known, see e.g. the book of Bakry, Gentil and Ledoux [1]:

Proposition 14 When L is a diffusion generator, L is a derivation operator.

10



Assume now that V is a differential manifold and that A is the space of smooth functions.
A Markov generator L : A — A is of diffusion type if and only if it is a second order operator
without zero order term. When the second order part of L does not vanish identically (which is
just asking for L not being a derivation), we deduce from Proposition 14 that it is natural to ask
for x =1 in (13), if we don’t want L to contain the same second order terms as L, up to a factor.
A derivation operator K comes from a vector field if and only if K transforms R-valued functions
into R-valued functions. Furthermore this condition is equivalent to the fact that K is a Markov
generator (leading to the deterministic dynamical system obtained by following the corresponding
vector field). Thus in this context, the existence of the decomposition (8) is equivalent to the
existence of ¢ € T such that ¢ L comes from a vector field. When this is satisfied, we can take y = 1
and L = (L.

3 The free motion Schrodinger equation on the line

Consider the case where V := R is endowed with the Laplacian operator L := 6 on the smooth
functions, namely on A := C*(R). The corresponding carré du champ is the usual one:

Vfged,  Tlf,g]l = 2(0f)(d9) (14)

Take W := R,. To any z € W, we associate the eigenvalue A\, = —z2, and a corresponding
eigenvector ¢, defined by

V xeR, v.(x) = exp(izx) (15)

Note that the eigenvector ¢, is only algebraic, in the sense that it satisfies the relation L{p,] = A\, p.
everywhere on R, but ¢, does not belong to L? space of the Lebesgue measure. For z € W\{0}, 2
and —z parametrize the same eigenvalue —z2 and their eigenvectors ¢, and ¢_, = @, are linearly
independent. It appears that for any f € A,

V zeR, L.[f1(z) = 2exp(—iza)(dexp(iza))of(x)
= 2iz0f(x)

As in the end of the previous section, it leads us to take x, = 1, {, = 7 and Ez = 220, the generator
of the (deterministic) free motion at speed 2z. With the notation of Lemma 12, £ = i does not
depend on z e W.

Remark 15 As an illustration of Remark 10, we could have chosen { = —4, since the corresponding
operator L is the generator of the free motion at speed —2z.

For any z € W, the operators L = 02 and f/z commute and Remark 13 holds, with B := L?(u),
where p is the usual Lebesgue measure on R, and with C' := C; and C = R, . The assumptions of
Section 2 are thus satisfied and we can apply Lemma 12. Consider a test function f on R. For any
(t,y,z) €Y and s € R, we have

msR[f] (tv Y, Z) = RPj; [f] (ta Y, Z)
The left-hand side is just R[f](t + s,y + 2zs, z). Furthermore, from (11), we have for ¢t = 0,

VyER,VZER, R[f](O,y,z) = PO[f](y)
= f(y)

so we deduce that

VyeR, VzeR,Vs=0, R[f](s,y +2zs,2) = Pi[f](y) (16)

11



Thus we have solved the free Schrédinger equation on the line, i.e. we have found an expression
for the solution u : Ry x R 3 (s,y) — Pis[f](y) € C of

{ U(O,) = f
V (s,y) e Ry xR, osu(s,y) = i&gu(s,y)

At least if we are able to identify directly the kernel R, i.e. without just inverting (16)! It follows
from (11) that for any test function f on R,

Vet RlfGn) = TR p (i ) a7)

It may seem that we have not made much progress, since we still have to compute Py[pf](y).
Indeed, let us complete this task, just as an illustration since our goal is to by-pass such computa-
tions.

Recall that for any s > 0 and y € R, we have the following expression for the heat kernel:

dx
VAars

By using the holomorphic extension of 4/- on C\(—00,0], the above formula is also valid for s €
C\(—00,0], for appropriate test functions (e.g. when f is continuous and with compact support).
It follows that

fRfm exp(—(z — 1)%/(45)) (18)

dx

4t

Yty €W, R[fl(ty.2) = M f F () expliza) exp(—(x — y)?/(4it))

exp(izy)

= J f(z)R(t,y, z;x)dx
R

where

1 o 2
R(t,y,z;x) = T exp (z’t22 +iz(z —y) + ZW)

Nevertheless, the main advantage of (17) is to suggest the introduction of appropriate “concen-
trating” mappings to avoid direct computations. More precisely, for any h > 0 and (yo, z0) € R?,
consider the function fy ,, ., given by

VeeR,  fiyos(®) = exp(—izo(r —yo) = (= y0)*/(2h))/(xh)"* (19)

Extending as usual the action of P, to probability measures, the function fj, 4, -, can be written as

frmmze = Na(mh)rPaW)p s (20)

Pzo

We also have | fpyo.2|> = Ppja[dy,] and this relation explains the choice of the normalization in

(19). We deduce that for small b > 0, | 40,2 |2 is an approximation of the Dirac mass d,,, since it
is the Gaussian density of mean yy and variance h/4.
It follows from (17) (with z replaced by zp) and (20) that for all ¢ > 0 and = € R,

R[fhyo,zo] (t7 €, ZO) = \/i(ﬂ-h)l/‘l exp(lszz )(S;)ZO( ) fu [iio Ph/2 [5%]] (x)
— Vo ) 5 )

12



Namely, we have for any ¢t > 0 and z € R,

B\ /4
Rl fuyomo](t:7,20) = ()

™

1
h + 2it

(z —y0)® )

Normalizing the time ¢ into ht, we get

1 14 1 . o, 2 (z — Z/O)2
R fryo.20)(ht,x,20) = (h7r> m exp (—zzo(:v — o) + ihtzy — 2h(1~|—21t)> (21)

Finally we deduce from (16) that for f, ,, -, given by (19),

Pint [fh,yo,zo](x)
= R[fh,yo,ZO](hta T+ 2Z0ht7 ZO)

1\ 1 220ht — )2
= ( ) ————exp <—iz0(az+2z0ht—yo)+ihtzg— (z + 220 o) >

hr V1 + 2it 2h(1 + 2it)
1 1/4 1 (I’ + 2zght — y0)2
= (= ———exp | —izo(x + 220ht — yo) + ihtz2 — (1 — 2it
<h7r> Jit2i P ( of oht = o) 0 o T )

In particular, we get,

1 (x + 220ht — y0)2>
VzelR, P, 20\ T 2 T X <_
’ ht[fh,yo7 0]( )| 7Th(1 T 4t2) p hm

which is the Gaussian density of mean yy — 22pht and variance hv/1 + 4t2/2. This result is well-
known and corresponds to the quantification of the free motion on R with speed —2zp, the mapping
| Pine| fh,yo,ZO]|2 being strongly concentrated around yg — 2zght for A > 0 small.

Of course, we could have computed directly Pini[fh y0,20](y), starting from the formulas (18)
and (19), but the apparition of the free motion R} 3 ¢ — yg — 220t would (maybe) have been more
mysterious. Furthermore, the intertwining relation (16) imposed the form of the concentrating
mappings fa,yo,zo-

Indeed, let us translate the above observations into the framework presented in the introduction,
to show Theorem 5. On V := R x R, consider the unitary algebra A of continuous functions f such
that for any fixed z € R, f(-,2z) € A, namely f is globally continuous and smooth in the first
variable. Define on A the operator £ given by

VIEAY () eV, Llflw2) = Lf(.2))w)
= 220,f(y,2)

It is the generator of the free motion: for any initial point (yo, z0) € V, the motion generated by L
is given by

Vs=>0, (Y(s),Z(s)) = (yo+ 2208,20)
Consider the generator £ given by (1), a corresponding Markov process starting from (o, yo, 20) is

X = (X(8))sz0 = (to + 8, Y0 + 2208, 20)s>0-
As suggested by (12), define for any h > 0, (t,y,2) € U, x €V,

Fh(ta Y,z .’L‘) = R[fh,y,z] (ta €, Z)

13



Since we have

VaeR, Bty so)f = e exp <_<ﬂf—y>2>
) y Yy <y 7Th(1+4t2) hm

Hypotheses (H1) and (H2) are satisfied. In the latter, the concentration is even strong: for any
keZy,any T > 0 and any r > 0,

1
fw o sw o[ Bty ) = 0
h—=04+ h% (4 e[0, T]xRxR Jjz—y|=r

Hypothesis (H3) is a direct consequence of (16), so Theorem 5 is shown.

Remark 16 In traditional semi-classical analysis, for h > 0 and (yo,20) € R?, the functions
Ihyo.zo = Jhyyo,zo/m are often preferred to fp y, -, and lead to the following formulas valid for z € R,

1\ 1 —izo(x + 220t — yo) + itz2 (z + 220t — yo)?
P = [=) —— ¢ 0 (1 — 24t

and

1 (T + 220t — yo)2>
P @) = exp (-

It amounts to consider the process (X(hs))ss0 = (hs,Y (hs), Z(hs))s=o starting from (0,y, z/h),
and for this purpose, it is important that z is not confined to a compact set in the supremum in
(H2). In this way, we recover the classical motion

Vs=>0, Y(hs) = y+2zs

This high frequency normalization (leading to comparison of quantum times ht, in the
above lhs, to classical times ¢, in the above rhs) does not seem so natural in our Markov process
context, specially when the fibers W are not vector spaces, as in the next sections.

Another manner to obtain the classical motion is to consider a small frequency normaliza-
tion and long times: consider the process (X(s/h))ss0 = (s/h,Y (s/h), Z(s/h))s=0 starting from
(0,y, hz), we get

Vs=>0, Y(s/h) = y+2zs

Unfortunately, this normalization is not very useful, since the concentration property (H2) holds
only for times of order h.

We will see in the next sections to which extent this approach can be extended to discrete
settings.

4 The free motion on 7Z

We consider now V := Z. There are two natural difference operators on Z: 0% and 0~, acting on
A, the space of all bounded mappings from Z to C, via

" f(x)
VfeAVzreZ, {6‘f(:r)

|
==
8
+
=
|
==
=
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It is immediate to check that
VfeA Vaxel, oto f(x) = 00T f(x) = —(0" +07)f(x) = 2f(x) — f(z +1)— f(x —1)

We endow Z with the discrete Laplacian L = 0% + 0. The corresponding carré du champ is given
by

VigeAVzeZ  Tlfgllx) = (fz+1)—f(2))(9(z+1)—-g(z)) (22)
+(f(z=1) = f2)(g(z = 1) = g(2))

Take W = [0,27), seen as the set of angles of elements from T, and for any z € W, consider the
function ¢, defined by

VzxelZ, o.(z) = expl(izz) (23)

It is an algebraic eigenvector of L associated to the eigenvalue A, = 2(cos(z) — 1), but note that it
does not belong to [?(Z). For z € (0,7), z and z + 7 parametrize the same eigenvalue 2(cos(z) — 1)
and their eigenvectors ¢, and ¢_, = p, are linearly independent.

We compute that for any test function f € A,

VaeeZ,  Llfl(x) = exp(—iza)T[exp(iz), f](z)
(exp(iz) — 1)(f(z + 1) — f(2)) + (exp(—iz) — 1)(f(z — 1) — f(x))

namely

=
N

= (exp(iz) — 1)0" + (exp(—iz) —1)0~
= (exp(—iz) — 1)L + (exp(iz) — 1 — (exp(—iz) — 1))0"
= (exp(—iz) — 1)L + 2isin(z)o"

So according to (13), for z € [0, 7], we can take x, = exp(—iz), (; = i and L, = 2 sin(z)0", which
is the generator of the Markov process always jumping toward the right, with intensity 2sin(z).
These choices lead to &, = iexp(—iz).

Remark 17 As another illustration of Remark 10, we could also have considered the decomposition
L. = (exp(iz) — 1)L — 2isin(z)0~

which leads to £, = —iexp(iz), conjugate to its previous value.

For z € (m,2m), we proceed similarly, except that we rather take x, = exp(iz), (, = 1, L, =
—2sin(z)0~ and £, = iexp(iz). To simplify the presentation, from now on, we restrict W to be
[0,7]. The missing part (m,2m) of the fibers can be treated similarly and enable to reverse the
direction of the “free motion”.

Due to the commutation properties mentioned at the beginning of this section, L and f/Z com-
mute. Note also that endowing A with the supremum norm transforms it into a Banach alge-
bra and that L is bounded on A. The assumptions of Section 2 are satisfied and we can ap-
ply Lemma 12. Starting from (0,y,z) € U, the operator £ generates the process (s, Y (s), 2)s>0,
where (Y(s))s=0 is a Markov process starting from y and whose generator is Ez. More precisely,
(Y(s))s=0 = (y + N(2sin(2)s))s=0, where (N(s))s=0 is a standard Poisson process starting from 0
and of intensity 1. It follows that for any test function f € A, (16) has to be replaced by

VyeZ VzeR Vs=0,  E[R[f](s,Y(s),2)] = Peslfly) (24)

15



where the operator R is given by (11):

Ve fed Ry - PO p g ) (25)

Thus we have found a probabilistic representation of a modified free Schrédinger equation on
the discrete line, i.e. of the solution v : Ry x Z 3 (s,y) — Pe_s[f](y) € C of

{ ’LL(O, ) = f
v (s,y) eRy x Z, 6Su(s7y) = §zL[U](Sa?J)

Contrary to the previous section, &, € iR only for z € {0, 7}, which corresponds to degenerate
situations, since f/z = 0 and so Y(s) = y for all s = 0. This was to be predicted from Remark 1,
asking in this situation for (Y'(s))s>o0 to be a deterministic process. For z = 0, (24) and (25) are
both equivalent to R[f](t,y,0) = Pi[f](y), for all ¢ > 0 and y € Z. For z = 7, (24) and (25) are
respectively equivalent to

Vt=>0,VyeZ, R[fl(t,y,m) = P_u[f](y)

and
Vi20vyes RUACwm = TS Rlenl0

In view of Remark 4, another intriguing case is when &, € {£1}. Here, it corresponds to z = 7/2

and we get &9 = 1, pr/p(x) = i* for all ¥ € Z and Ay = —2. In this situation we have
exp(2:t
vizovyez Rt = Vb )

and (24) leads to a strange formula: for any f € A and y € Z,

Vo0, BRI Pl NC)| = RIAW

Let us now see how some features of the treatment of the free motion on R presented in the
previous section can be adapted to the the present discrete setting of Z.
Following the strategy described in (12), define for any A > 0 and (y, z) € Z x [0, 7],

YV xeZ, Jhyz(x) = 0y(z) (26)

where the Kronecker delta appears in the rhs. Note that the function fj, . is so concentrated
“around” y that the parameters h and z do not play a role. Next we consider, for any h > 0,
(t,y,z) eV and x eV,

Fh(ta y,z;a:) = R[fh,y,z](tvxﬂz)
_exp(—iAst) .
= 480,2(35) Py [‘szh,y,z]( )
exp(—iA:t)pz(y) : -
2020 p 15, )
= exp(—2i(cos(z) — 1)t + iz(y — x))gey(x) (27)

where
VtZOa yEZ,Vl’EZ, gt,y(x) = B [5y]($)

Let p the counting measure on Z. The validity of (H1) and (H2) is provided by
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Lemma 18 For anyt >0 and y € Z,

D@ = 1
T
and for any T = 0,

) 1
lim h2 sup Z |9t7y(x)|2 =2
h4>0+ t€[07T]7y€Z er\{y}

Proof
Since the operator L is self-adjoint in L?(u), the operator Py, is unitary in L2(u). It follows that

D loey@1F = X 16, ()]

T€Z z€Z

= 1

namely the first equality of the lemma is true. The second equality is equivalent to

1 2
lim = sup (1= g, ()) = 2 (28)
h—04 h? t€[0,T],yeZ Y

By definition of Pj, = exp(ihL) on the Banach algebra A, for any y,z € Z, we have the following

expansion for A > 0 small,

(ih)?
2

Pafs,)(x) = 8,(x) +hL[5,)(x) + 5 L2[8,](x) + o(h?)

where the term o(h?) is uniform over g,z € Z. In particular, for = = y, we get

giy(y) = 1 —2ih —3h%+ o(h?)
because
Loyl(y) = L(y,y) = —2
L’[6,)(y) = > Lly.v)L(Y,y)

y' el

= L(y,y)*+ Ly, y + )Ly + 1,9) + L(y,y — 1)L(y — 1, y)

= 6

We deduce that

90y (W)? = |1 —2hi —3h% + o(h?)|”

(1—3h%)° + (2h)% + o(h?)
= 1-2h% +o(h?)

and the announced result follows

|
Hypothesis (H3) is a direct consequence of (24) applied with f replaced by f, ., since
Vh>0,VY (y,2)€eZ x [0,7],V x€Z, Fr(0,y,z;2) = fry(2)
and since under P(g,, .y,
Vs=0, X(s) = (s,y+ N(2sin(z)s),z2) (29)
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Remark 19 In the spirit of Remark 16, it is now only possible to consider the not very convincing
small frequency normalization: replacing in (29) s by s/h and z by zh (assuming z € [0,7/h]), as h
goes to 04, the base component converges toward the process (y + N(2zs))s=0, which is a Poisson
process whose rate 2z can be as high as wanted (for i small).

Remark 20 It is tempting to play with the objects at hand, to see how the results are affegted by
their modifications. For instance, we could replace the operator L defined in (8) by (1 —€)L + €L,
where € € (0,1). Then we have

G I CY S0

with
E(€) i (1 — E)Z + €L
= —ae
ac = |e+ (1 —e)x]
1—
X(E) = M e T
Qe
fo - 17

It follows that £(9) = £(ex + (1 — €))/ac. In the setting of the present section, we get for z € [0, 7],

&) = &leexp(iz) + (1 €))/|eexp(iz) + (1 - )]

and this complex number can be “more imaginary” than &,. Remark 4 may then let us believe
that is advantageous to consider such transformations with € € (0,1). But it is wrong, because
computing the corresponding operator R(€) and the functions (F, }EE)) n>0 (via (12) with the functions
fhy,= given by (26)), we get that (H2) is not satisfied, the concentration being only of order 0.

5 The free motions on tori

After proving Theorems 7, 8 and 9 in their respective torus settings, we will discuss generally about
the tensorization of multi-dimensional quantification.

The case of V' = Z,, for a given n € N\{1}, is very similar to the situation of Z described in the
previous section. The difference operators 0~ and 0 are extended to act on Z,, which is endowed
with the discrete Laplacian L = 0-0" = 070~ = ¢~ 4+ d* (when n = 2, we have furthermore
0~ = 0% and L = 20"). The underlying Banach algebra A,, is just the usual algebra of all C-valued
functions defined on Z,,. The carré du champs of L is still given by (22), where z takes values in
Ly, Let W =W, = 2%[[0, n — 1] and consider for any z € W, the function

V x € Zn, 0.(z) = exp(izz) (30)

which is an eigenvector of L associated to the eigenvalue A, = 2(cos(z) — 1). All the computations
and observations of the previous section are still valid, once Z has been replaced by Z,, and [0, 27)
by W,. In particular, for z € W,, n [0, 7] = (27/n)[0, |n/2]] (where |-| stands for the integer part),
we can choose L, = 2 sin(2)0T, with y. = exp(—iz), ¢ = i and & = iexp(—iz). Again we
can apply Lemma 12: starting from (0,y,2) € U = Ry x Z, x W,,, the operator £ generates the
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process (s, Y (s), 2)s=0, where (Y'(s))s>0 is a Markov process starting from y and whose generator
is L. Namely, (Y(s))s=0 = (y + N(2sin(2)s)[n])s=0, where (N(s))sso is a standard Poisson
process starting from 0 and of intensity 1, and where [n] means modulo n. In conformity with
(1), L= L. is the generator of the process (Y(s), z)s=0. Going through the same constructions of
R, (fhy,2)h>0yezn,zew, and (F},)p=0, given respectively in (25), (26) and (12) (see also (27)), we
conclude to the validity of Theorem 7.

Remark 21 Contrary to Remarks 16 and 19, neither the high frequency nor the fruitless small
frequency normalizations are possible for the above quantification, since W, is finite.

The case of V = R/(27Z), has similarities with both the situations of R and Z,,. We consider
the Laplacian operator L = d% on the algebra A of smooth functions defined on R/(27Z). Its carré
du champs is given by (14). Take W = Z, to any z € Z, we associate the eigenvalue A\, = —z2 and
a corresponding eigenvector ¢, is defined by

vV zeR/(2nZ), v.(x) = exp(izx)

As in Section 3, for any z € Z, we take x, =1, (, =i, &, = 7 and ZALZ = 2z0. Lemma 12 can be
applied: starting from (0,y,2) € U = R, x R/(27Z) x Z, the operator £ generates the process
(X(8))s=0 = (s,y + 228,2)s>0. In conformity with (1), £ = L. is the generator of the process
(y + 228, 2)s>0. Going through the same constructions of R, (fny,2)h>0yer/(272),2ez and (Fp)n>o0,
given respectively in (17), (20) (in both equations, (F;)¢>0 is now the heat semi-group generated
by L on R/(27Z)) and (12), we conclude to the validity of Theorem 9.

Remark 22 Similarly to the first part of Remark 16, it is possible to consider a high fre-
quency normalization for the above quantification. More precisely, for given z € R, consider
H, = {h >0 : z/h € Z}. We get that for h € H,, the base component of the process
(X(hs))s=0 = (hs,Y (hs), Z(hs))s=o starting from (0,y,z/h) is equal to (y + 2zs)s>0, the classi-
cal free motion on R/(27Z).

We now come to the situation of the free motions on finite multidimensional tori. With the nota-
tions introduced before Theorem 8, consider the Laplacian operator L := > je[m] LY on the space A
of all C-valued functions defined on V.. For any z = (21, 22, ..., 2m) € W, A = 23y (cos(z;) — 1)
is an eigenvector of L associated to the eigenfunction ¢, given by

Vo= (1'1,.%'2, 7xm) € V7 902(1') = exp i Z Zﬂx]
jelm]

Considering the associated Doob transform L. defined as in (7), (8) must be replaced by

L. = > x;,LY +ilL. (31)
jelm]
where
Vielm], xz = exp(—iz)
L. = 2 Z |sin(z;)| 0=
jelm]
Y je[m], g;j = sign(sin(z;))

VieAYazeV,Vjie[m],Vee{-1,1}, Vf(x) = f(z+ee;)— f(x)
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Taking into account that the operators L), L®) ... L™ and L, all commute, the computations
of Section 2 can be extended to this situation. Consider £ the operator given in (9) and replace
the definition of the operator R from U to V given in (11) by

v(t7y7z)em7vfe'A7
exp (2?5 2jepmy(cos(z) — 1)5zj)

R[f](t,y,2) = o) exp | —t > ¢, LY |[p.f1(v)
? jelm]

Lemma 12 has to be modified into

Lemma 23 We have

VseRy, exp(s€)R = Rexp|s Z gsz(j)

jelm]

with &, = iexp(—iz;), for all j € [m].
This relation is equivalent to the gemerator intertwining

SR = R ) &LV

jelm]

The proof of Theorem 9 now follows the same track as before: the mappings (fh,y,2)h>0yev,zew
and (F},)p~0 being defined respectively in (26) and (12).

The above presentation shows that the method based on the Doob transform with respect to
complex valued eigenvectors can be applied in multi-dimensional settings. It would be interesting
to investigate relations such as (31) in more general situation, when the operators entering in the
decomposition are not commuting, even in one dimension.

Nevertheless, note that multi-dimensional quantification can be directly tensorized, without
going through the Doob transform arguments. In the framework of the introduction, consider two
families (Ll(j ))je J,, for 1 € {1,2} and two disjoint finite index sets J; and Ja, of reversible Markov
generators on L2(V}, i, C), where V] is the state space endowed with the measure g;. Assume that
they are respectively the multidimensional quantifications of operators £;, whose state space is V,
in the sense that (H1), (H2) and (H4) are satisfied. Define

V = VixVW

peo= o @ pe

J = JiuJdy
Vied, LU = { Léj.) Ejed
LY ifje

V = V1 X VQ

L = L1+ Ly

where £; (respectively L2) acts on the first (resp. second) component of V. We get then:
Proposition 24 The family (L(j))jej 1s the multi-dimensional quantification of L.

Proof
For [ € {1,2}, let (F} )n>0 be a family of mappings such that (H1), (H2) and (H4) are satisfied, for

the multidimensional quantification of the operator £; by (Ll(J )) je,- Define the family (F},)n~0 by
tensorization of these families: for any h > 0,

Vit= 0) v (yla Zl) € Vl; v (?/2, 22) € VQ, Fh(t7 (yla y2)a (Zla 22)) = Fl,h(tayla Zl)FQ,h(ta Y2, ZQ)
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Hypotheses (H1) and (H2) are clearly satisfied, once V' is endowed with the distance p given, e.g.,
by

V (r1,22), (y1,92) €V, p((z1,22), (y1,92)) = max(p1(21,v1), p2(r2,92))

where p; and py are the underlying distance on Vi and V,. Hypothesis (H4) is also true, be-
cause a process X = (s,Y(s),Z(s))s=0, associated to £ = 05 + L and starting from a point of
¥, can be written as (s,Yi1(s), Ya(s), Zi(s), Z2(s))s=0 where X1 = (s,Y1(s), Z1(s))s=0 and X3 =
(s,Ya(s), Z2(s))s=0 are independent Markov processes respectively generated by £ = ds + £1 and
Lo = 0s + Lo (in the sense of martingale problems). One should take in (H4), for any j € J,
58]) = fl(?o) when j € J;, and f(()J) depends only on (y0,21,0), when (yo,20) = (¥1,0,¥2,0, 21,0, 22,0),
with obvious notations.

Of course, the above construction can be extended to any finite number of factor spaces. In
particular, we can take factor spaces coming from any of the examples given in Theorem 5, 6, 7 or
9. Theorem 8 has only taken factor spaces coming from Theorem 7. Note that when the factors all
come from Theorem 5 and 9, there is no need for the notion of multi-dimensional quantification,
since quantification is sufficient. Indeed the product satisfies (H3), with L =3 . ; LU) | as we have

S — i
jedJ
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