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Abstract

The traditional quantification of free motions on Euclidean spaces into the Laplacian is revisited
as a complex intertwining obtained through Doob transforms with respect to complex eigenvectors.
This approach can be applied to free motions on finitely generated discrete Abelian groups: Zm,
with m P N, finite tori and their products. It leads to a proposition of Markov quantification. It is
a first attempt to give a probability-oriented interpretation of exppξLq, when L is a (finite) Markov
generator and ξ is a complex number of modulus 1.
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1 Introduction
Broadly speaking, quantification is the mathematical link between classical and quantum mechanics
and has led to the tremendous development of semi-classical limits, see e.g. the book of Zworski
[6] and the references therein. Usually, the underlying state spaces and dynamics are continuous,
since it is important to be able to consider high frequencies or large values in the spectrum of the
associated Hamiltonian operators, quantifying the classical energies. Nevertheless, quantification
has also been considered for discrete spaces, specially in the context of wave equations, see for
instance Macià [3, 4], Mielke et al. [2, 5]. In general the authors also “quantify” space, by requiring
that the distance separating nearest neighbors is of the same order as the semi-classical parameter
h ą 0, in some sense their results concern approximation of continuous spaces. Here we would like
to consider fixed discrete state spaces, even finite sets, e.g. just on Z3 B Z{p3Zq. It leads us to
propose a general definition of quantification in the context of Markov process theory and to see
that it is meaningful, at least for the simplest examples of free motions. Of course this first attempt
will have to be tested with more interesting examples, but it gives a feeling of what we are looking
for.

1.1 Definition of a Markovian quantification
Let V be a metric space, whose distance is denoted ρ, endowed with a (non-negative) measure µ.
Consider a Markov generator L which is self-adjoint in L2pµ,Cq, in probabilistic terminology, we
say that µ is reversible for L. Functional calculus enables one to define the operator Pξ B exppξLq
for any ξ P C. At least for ξ P C`, the set of complex numbers whose real part is non-negative, the
domain of Pξ is the whole space L2pµ,Cq, since the spectrum of L is included into p´8, 0s. When
L is a jump generator with bounded jump rates (in particular when V is finite), the domain of Pξ
is L2pµ,Cq for all ξ P C.

Let V be another topological space endowed with a continuous and onto mapping π : V Ñ V .
It means that V can be seen as a weak kind of bundle over V : for any y P V , denote Vy B π´1pyq,
it will be convenient to write the elements of V under the form py, zq, where y P V and z P Vy. The
base component y should be thought of as a position and the fiber component z as a generalized
speed or impulsion. A priori no assumption is made on the fibers Vy, for y P V , they could
be not all the same. Let L be a Markov generator on V such that for any py0, z0q P V, the
martingale problem associated to L and to the initial point py0, z0q is well-posed. We will denote
by X B pX psqqsě0 B pY psq, Zpsqqsě0 a corresponding càdlàg Markov process and Ppy0,z0q will stand
for the underlying probability measure. It is convenient to add the time as a coordinate to V: on
V B R` ˆ V, whose generic elements are denoted by pt, y, zq, consider the generator

L B Bt ` L (1)

A corresponding Markov process starting from pt0, y0, z0q is X B pXpsqqsě0 B pt0`s, Y psq, Zpsqqsě0

under Ppy0,z0q. The latter underlying probability will also be denoted Ppt0,y0,z0q to indicate that X
is starting from pt0, y0, z0q (and Ppy0,z0q when t0 “ 0).

We say that L is a quantification of L if there exists a family pFhqhą0 of continuous and
bounded mappings from Vˆ V to C satisfying the three following conditions:

(H1) probability density: for any h ą 0 and any pt, y, zq P V, we have
ż

V
|Fhpt, y, z;xq|

2 µpdxq “ 1

(H2) concentration: for any r ą 0 and any compact set K Ă R` ˆ V ,

lim
hÑ0`

1

h
sup

pt,y,zqPV : pt,yqPK

ż

ρpx,yqěr
|Fhpht, y, z;xq|

2 µpdxq “ 0
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(H3) intertwining: for any py0, z0q P V, there exists ξ0 P T, the circle of complex numbers of
modulus 1, such that,

@ h ą 0, @ s ě 0, @ x P V, Ep0,y0,z0qrFhpXpsq;xqs “ Pξ0srFhp0, y0, z0; ¨qspxq

Note that the rhs is a priori only defined µ-a.s. in x P V , since Pξ0s is an operator on L2pµ,Cq.
Nevertheless, as an immediate consequence of dominated convergence, the lhs is continuous with
respect to x P V . The meaning of the above equality is thus that there exists a continuous version
of Pξ0srFhp0, y0, z0; ¨qs given by the lhs. In all our examples of discrete free motions, ξ0 will in fact
only be dependent on z0.

A drawback of Assumption (H3) is its lack of stability by tensorization (except in the traditional
situation where ξ0 does not depend on py0, z0q P V) and the following extension shall more gener-
ally be considered. We say that a commuting family pLpjqqjPJ of reversible Markov generators in
L2pµ,Cq, where J is a finite index set, is a multi-dimensional quantification of L, when there
exists a family pFhqhą0 of mappings as above satisfying (H1), (H2) and

(H4) multi-dimensional intertwining: for any py0, z0q P V, there exists a family pξpjq0 qjPJ P

TJ , such that,

@ h ą 0, @ s ě 0, @ x P V, Ep0,y0,z0qrFhpXpsq;xqs “ exp

˜

s
ÿ

jPJ

ξ
pjq
0 Lpjq

¸

rFhp0, y0, z0; ¨qspxq

Let us make a few comments about the definition of quantification by (H1), (H2) and (H3).
The multi-dimensional extension will be justified by Theorem 8 below and discussed at the end of
Section 5.

Remark 1 In the usual real free motion Schrödinger case recalled in Theorem 5 below, ξ0 “ i (or
ξ0 “ ´i) does not depend on py0, z0q P V. Under natural assumptions, it is equivalent to the fact
that for any h ą 0 and x P V , the process pFhpX psq;xqqsě0 is deterministic. Indeed, for the direct
implication, note that Pξ0 is a unitary operator for any ξ0 P iR, so we get for all h ą 0, py0, z0q P V
and s ě 0,

ż

|Pξ0hsrFhp0, y0, z0; ¨qspxq|2 µpdxq “

ż

|Fhp0, y0, z0;xq|2 µpdxq

“ 1

where we used (H1).
On the other hand, by Cauchy-Schwarz’ inequality, we have for any h ą 0, py0, z0q P V, s ě 0

and x P V ,
ˇ

ˇEpy0,z0qrFhpXphsq;xqs
ˇ

ˇ

2
ď Epy0,z0qr|FhpXphsq;xq|

2
s (2)

so that
ż

ˇ

ˇEpy0,z0qrFhpXphsq;xqs
ˇ

ˇ

2
µpdxq ď

ż

Epy0,z0qr|FhpXphsq;xq|
2
sµpdxq

“ Epy0,z0q
„
ż

|FhpXphsq;xq|
2 µpdxq



“ Epy0,z0qr1s
“ 1

Furthermore, Assumption (H3) implies that

@ h ą 0, @ py0, z0q P V, @ s ě 0, @ x P V,
ˇ

ˇEpy0,z0qrFhpXphsq;xqs
ˇ

ˇ

2
“ |Pξ0hsrFhp0, y0, z0; ¨qspxq|2
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It follows from the above computations that we must have equality in the Cauchy-Schwarz’ in-
equality (2). This is only possible if FhpXphsq;xq is a deterministic quantity under Ppy0,z0q, for any
fixed h ą 0, py0, z0q P V, s ě 0 and x P V . We can go further and conclude that the process
X itself is deterministic, under the assumption that the family pFhqhą0 is discriminating, in the
sense that for any pt, y, zq “ pt, y1, z1q P p0,`8q ˆ V, there exist h ą 0 and x P V such that
Fhpt, y, z;xq “ Fhpt, y

1, z1;xq (this condition will be satisfied in all our examples).
Conversely, when pFhpX psq;xqqsě0 is deterministic, we get in (H3)

@ h ą 0, @ py0, z0q P V, @ s ě 0, @ x P V, FhpXphsq;xq “ Pξ0hsrFhp0, y0, z0; ¨qspxq

Taking the square of the modulus and integrating, we deduce that
ż

|Pξ0hsrFhp0, y0, z0; ¨qspxq|2 µpdxq “ 1

“

ż

|Fhp0, y0, z0;xq|2 µpdxq

Now assume that L is irreducible, namely its eigenvalue 0 is of multiplicity 1. Its eigenspace is
then reduced to the constant functions. Spectral calculus implies that for ξ0 R iR and s, h ą 0, all
the eigenvalues, except 1, of Pξ0hs have a modulus smaller (respectively larger) than 1 if <pξ0q ą 0
(resp. <pξ0q ă 0). Thus for the above equality to hold, the mapping V Q x ÞÑ Fhp0, y0, z0;xq must
be constant, for any h ą 0 and py0, z0q P V. Assumption (H2) then leads to a contradiction, except
in the trivial case where V is a singleton. Thus we must have ξ0 P piRq X T “ t˘iu.

These considerations show why when V is discrete (then X cannot be deterministic if we want
it to be Markovian), one has to consider for ξ0 other elements of T than ˘i. The fact that we
imposed ξ0 P T is just a normalization taking into account that it is always possible to multiply a
Markov generator by a positive constant: it amounts to multiply the time by the same constant.

˝

Remark 2 Let us discuss the meaning of the above quantification, in a very heuristic way. Ac-
cording to (H1) and (H2), for any s ě 0 and x P V , we have for h ą 0 small

|FhpXphsq, xq|
2
“ |Fhphs, Y phsq, Zphsq;xq|

2

≈ δY phsqpxq

and

|Fhp0, y0, z0; ¨q|2 ≈ δy0

where for any y P V , δy stands for the Dirac mass at y. Taking into account the previous remark,
we “infer”, in the case where ξ0 “ i, that (H3) writes

δY phsqpxq ≈
ˇ

ˇ

ˇ
Pihsr

a

δy0spxq
ˇ

ˇ

ˇ

2

or
b

δY phsqpxq ≈
ˇ

ˇ

ˇ
Pihsr

a

δy0spxq
ˇ

ˇ

ˇ
(3)

namely, |Pihsr¨s| has approximatively transported
a

δy0 into
a

δY phsq, if a sense could be given to
these expressions. More rigorously, an equality cannot hold in (3), since we would deduce that
the evolution of Y phsq, for s ě 0, does not depend on z0, which is typically not true. In fact,
an important motivation for the quantification procedure is to remove the fiber components of the
evolution of pY phsq, Zphsqqsě0 and to include them (as “phases”) into the evolving complex-valued
distributions on V given by the family pPihsrFhp0, y0, z0; ¨qsqsě0. According to the interpretation of
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y and z as position and speed components, the stochastic process pY phsqqsě0 could be seen as a
second order Markov process (while pY phsq, Zphsqqsě0 is a usual, i.e. first order, Markov process).
Quantification then looks like a crazy attempt to approximate the second order Markov process
pY phsqqsě0 by a “first order Markov process” on V whose semi-group would be pPihsqsě0, puzzling
as the imaginary-valued times remain. A similar heuristic could be proposed in the case of discrete
state spaces V : then for all y P V ,

a

δy “ δy, interpreting the Dirac mass as a density with respect
to the counting measure (i.e. the Kronecker delta), and (3) would have to be modified into the
statement ErexppiΘphsqqδY phsqs ≈ Pξ0hsrδy0s, where Θphsq is a random real phase, with Θp0q “ 0.
A difference with the usual Schrödinger case is that a part of the information about the fiber
component will be transferred to the complex time, since ξ0 will depend on z0.

˝

Remark 3 The concentration property of (H2) is of order 1, in the sense that a concentration
of order k P Z` can be defined by requiring that for any r ą 0 and any compact set K Ă R`ˆV ,

lim
hÑ0`

1

hk
sup

pt,y,zqPV : pt,yqPK

ż

ρpx,yqěr
|Fhpht, y, z;xq|

2 µpdxq “ 0

In the usual Schrödinger case, the concentration will even be strong, in the sense that it is of any
order k P Z`.

The order 1 is the smallest meaningful order for quantification: for fixed s ą 0 and small h, the
movement of X phsq from X p0q will typically be of order h (either in distance or in probability to
have jumped to a distance of order 1), because we are looking for generators L leading to “ballistic”
behaviors, even if the associated motions are not deterministic. As a consequence, to get a pertinent
result, the concentration should be stronger than h and this is exactly what is requiring (H2). In
our simple discrete examples, we will have for h ą 0 small, with the notations of (H2),

sup
pt,y,zqPV : pt,yqPK

ż

ρpx,yqěr
|Fhpht, y, z;xq|

2 µpdxq “ Oph2q

˝

Remark 4 The above definition of quantification is not completely satisfactory, because a Markov
process on V can be seen as its own quantification. Indeed, let be given a jump generator L on a
discrete space V . It is the quantification of L B L on V B V ˆ t0u ” V , by choosing ξ0 “ 1 and

@ h ą 0, @ pt, y, 0q P V, @ x P V, Fhpt, y, 0;xq B δy,x

where the rhs is the Kronecker delta. A similar result holds on general state spaces V and Markov
generators L, by considering a family pFhqhą0 such that |Fhpt, y, 0;xq|2 µpdxq is an approximation
of the Dirac mass at y and Fhpt, y, 0;xq is symmetrical in y, x and does not depend on t.

This kind of degeneracy could be avoided by requiring in (H3) that ξ0 P Tzt´1, 1u, the case
ξ “ ´1 appearing for instance when L generates deterministic motions that can be reversed in
time. This prohibition of real values for ξ0 is in the spirit of Remark 2, where we are trying
to get a probabilistic interpretation of Pξ0t, for t ą 0, task which is particularly puzzling when
ξ0 R R. Furthermore, we are looking for generators L whose associated motions contain the smallest
possible quantity of randomness (the most ballistic, with the wording of Remark 3) and according
to Remark 1, this is reflected by the least real possible ξ0. Nevertheless, it will become apparent in
Sections 4 and 5 that real values should be allowed for ξ0 for some py0, z0q P V.

Another drawback of the present definition of quantification, is that given the Markov gen-
erator L, there is not a unique L to which L is the quantification, up to natural identifications.
Indeed, given a quantification, another one can be obtained by enlarging the fibers (for instance by
duplicating them).
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A notion of minimal quantification up to appropriate isomorphisms is thus missing and this
minimization should concern first the real part of ξ0 and next the size of the fibers of V.

˝

In the present paper, we will investigate some simple situations of free motions: the generator L
will only act on the base component y, but in a way parametrized by the fiber component z. Thus
the fiber component will not move: for any s ě 0, Zpsq “ z0. This feature imposes that all the
fibers are the same, property which was not required in the general definition given above. We will
have that V “ V ˆW , where W is another topological space, even if its topology will not play a
role when the fiber component does not move.

As already mentioned, our main goal is to define quantification on finite state spaces V . This
demand is the reason why we allow the process pX psqqsě0 to be stochastic and for the complex
number ξ0 P T not to be necessary equal to ˘i, in accordance with Remark 1. In fact our initial
motivation is an inverse problem: given a finite irreducible Markov generator L, we are wondering if
we can find a “natural” dynamics to which it is a quantification. It leads to other questions that are
out of the scope of this paper, in particular because the limitations pointed out in Remark 4 have
to be overcome first: is there always a “semi-classical limit” (i.e. a corresponding minimal generator
L), is it unique? These interrogations will be interesting even for non-reversible generators, in fact,
the reversibility assumption was mainly adopted to simplify the definition of the operators exppξLq,
for ξ P C, but there is no such difficulty when V is finite. Here we will answer the first question
only for the usual Laplacian on a discrete multidimensional torus V “ Zn1 ˆ Zn2 ˆ ¨ ¨ ¨ ˆ Znm ,
where m P N and n1, n2, ..., nm P Nzt1u. In future works, we hope to deal with the challenges
of adding potential energy terms or of considering general weighted graphs. This is not just for
the sake of generality: to define (stochastic) Hamiltonian dynamics on graphs whose quantification
corresponds to Metropolis algorithms is an interesting perspective in the field of optimizing and
sampling stochastic algorithms.

1.2 Results on free motions
After recalling the classical example of the free motion on R, we will present the quantification of
discrete free motions, on Z and on finite tori.

For the free motion on R, we take V B R endowed with the Laplacian L “ B2. The fiber space
W is also equal to R and we consider the operator L “ 2zBy acting on V ˆW “ R2. We have

Theorem 5 The generator L is a quantification of L and in (H3), ξ0 “ i is independent of py0, z0q.

Here is our first example of quantification of a discrete free motion. Take V B Z endowed with
the generator L acting on bounded functions f on Z via

@ x P Z, Lrf spxq B fpx` 1q ` fpx´ 1q ´ 2fpxq (4)

The fiber space is W “ r´π, πq and we consider the operator L acting on bounded functions f
defined on Zˆ r´π, πq by

@ py, zq P Zˆ r´π, πq, Lrf spy, zq B 2 |sinpzq| pfpy ` signpzq, zq ´ fpy, zq (5)

where signpzq B 1 when z ě 0 and signpzq “ ´1 when z ă 0.
We have

Theorem 6 The generator L is a quantification of L and in (H3), ξ0 “ i expp´i |z|q.

Our second example of quantification of a discrete free motion is on the finite circle Zn, where
n P Nzt1u. Consider on Zn the discrete Laplacian L, equally given by (4) for x P Zn. The fiber
space is now

Wn B
2π

n
J0, n´ 1K (6)
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and we consider the operator L acting on any function f defined on the finite set Zn ˆWn via (5),
where py, zq P Zn ˆWn. In this context, Theorem 6 is valid, apparently without amendment, but
the domains of the operators are not the same:

Theorem 7 The generator L is a quantification of L and in (H3), ξ0 “ i expp´i |z|q.

To see the interest of (H4), we now come to a “multi-dimensional” example. We take V “

Zn1 ˆ Zn2 ˆ ¨ ¨ ¨ ˆ Znm , where m P N and n1, n2, ..., nm P Nzt1u. Let J B JmK B t1, 2, ...,mu and
for j P J , consider the generator Lpjq acting on functions f defined on V via

@ x P V, Lpjqrf spxq B fpx` ejq ` fpx´ ejq ´ 2fpxq

where ej is the element of V whose coordinates are all 0, except the j-th one equal to 1 P Znj . Let
W “Wn1 ˆWn2 ˆ ¨ ¨ ¨ ˆWnm , where the factor spaces are defined as in (6). Consider the operator
L acting on functions f defined on V ˆW via

@ py, zq P V ˆW, Lrf spy, zq B 2
ÿ

jPJ

|sinpzjq| pfpy ` signpzjq, zq ´ fpy, zq

where pz1, z2, ..., zmq are the coordinates of a generic element z PW .
The following result can be deduced from Theorem 7 by tensorization.

Theorem 8 The family of generators pLpjqqjPJ is a multi-dimensional quantification of L and in
(H4), ξpjq0 “ i expp´i |zj |q, for all j P J .

All these results will be in proven in the same manner, via an intertwining using complex
kernels. It will also be applied to the free motion on the circle V , seen as R{p2πZq, endowed with
the Laplacian L “ B2. The fiber space is now Z and we consider the operator L “ 2zBy acting on
V ˆW “ R{p2πZq ˆ Z. Theorem 5 is valid in this context:

Theorem 9 The generator L is a quantification of L and in (H3), ξ0 “ i is independent of py0, z0q.

The discreteness of the fiber space Z is now quite suspect and we are wondering if Theorem 9 is
true with the same operator L but withW “ R (V ˆW should then be seen as the cotangent space
of the circle). If it is not, it would mean that our definition of quantification is too strict: in (H3)
and (H4), the equality should be required only up to additive terms negligible with respect to h, as
in (H2). In the present paper, we fostered the investigation of the perfect intertwinings (H3) and
(H4), valid for all times.

The plan of the paper is as follows. The next section presents our intertwining method: it
is based on a Doob transform with respect to complex valued eigenvectors which do not vanish.
Sections 3 and 4 treat of the free motions on R and Z, respectively. The last section deal with the
cases of tori. We will also see that there is no difficulty in tensorizing Theorems 5 and 9 and that
the tensorization of Theorem 6 can be done as in Theorem 8.

2 An intertwining relation
Here the intertwining relation at the base of the construction of the family pFhqhą0 is deduced via
a Doob transformation applied with complex-valued eigenfunctions, contrary to the usual ground
state transforms, which are usually considered relatively to positive eigenvectors. The framework is
a little more general than in Subsection 1.1, since reversibility is not required, nor even invariance
with respect to a measure µ.

On a state space V , consider a Markov generator L “ 0 defined as an endomorphism on a
unitary algebra A of C-valued functions. Let ϕ P A be an eigenvector of L associated to an
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eigenvalue λ P C (in the applications of the following sections, we will only consider reversible L
with real eigenvalues, nevertheless, it will be convenient to deal with C-valued functions). Assume
that ϕ does not vanish on V and that ϕ´1 P A, to be able to consider the Doob transform of L
by ϕ, acting on A:

rL¨ B
1

ϕ
Lrϕ¨s ´ λ¨ (7)

Assume that we can find χ, ζ P T (the circle of complex numbers of modulus 1) and a Markov
generator pL : AÑ A, such that

rL “ χL` ζpL (8)

Remark 10 In general such a decomposition is not unique, as we will see in Remarks 15 and 17
of the next sections.

˝

Suppose furthermore that L and pL commute. This assumption is very strong, but will be
satisfied by our free motion examples. In more general situations, as those mentioned at the end
of Subsection 1.1, some commutation relations will enter into play, we hope to investigate them in
future works.

In the introduction, Pη stood for exppηLq for η P C and we would like to define similarly rPη
and pPη. In the present framework, the meaning of the exponential is not so clear. Not wanting to
obscure the simplicity of the following arguments, let us first assume that A is a Banach algebra
and that L is a bounded operator on A. With these hypotheses, Pη, rPη and pPη are naturally defined
as exponentials for any η P C. These assumptions hold when V is a finite set and A is the space
of all C-valued functions on V . For a more general set of hypotheses, see Remark 13 below. The
interest of the previous operators is:

Lemma 11 For any η, η1 P C, we have the intertwining relation

pPη1 rP´ζ̄pη`η1q “ rP´ζ̄ηPξη1

where ξ B ´ζ̄χ.

Proof
Since rL “ χL` ζpL, and L and pL commute, we have

@ η P C, rPη “ pPζηPχη

It follows that for any η, η1 P C

pPη1 rP´ζ̄pη`η1q “ pPη1 pP´pη`η1qPξpη`η1q

“ pP´ηPξηPξη1

“ rP´ζ̄ηPξη1

�

The above constructions depend on the choice of ϕ, but only up to a factor and it is tempting to
parametrize them by the eigenvalue λ. Its multiplicity, as well as the possible choices of χ, ζ and pL
mentioned in Remark 10, have to be taken into account. It leads us to considerW a parametrization
of a multiset of eigenvalues of L to which we can associate non-vanishing eigenvectors ϕ as above
(it seems preferable for the corresponding eigenvectors to be independent in case of multiplicity).
As in the introduction, define V B R` ˆ V ˆW , whose generic elements are denoted pt, y, zq. By
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definition, to each z P W , we associate an eigenvector ϕz, an eigenvalue λz, but also the complex
numbers χz, ζz, ξz, the generator pLz, etc. Consider the Markovian generator L given on A, the
unitary algebra of mappings on V which are C1 in t and belong to A as function of y, by

L B Bt ` pLz (9)

In this formula, the variable z enters in the definition of pLz, which is acting on y. Note that the
variable z is not modified by the dynamic generated by L. With the notations of the introduction,
the generator L is just pLz, so that (1) is valid.

The algebra A is not preserved by L, anyway, for any s ě 0, there is no difficulty to define
Ps B exppsLq on A directly via

@ F P A, @ pt, y, zq P V, PsrF spt, y, zq “ pPz,srF pt` s, ¨, zqspyq (10)

where pPz,s B exppspLzq, similar notations will be used below.
Define the operator R from V to V through

@ pt, y, zq P V, @ f P A, Rrf spt, y, zq B rPz,´ζ̄ztrf spyq

“
exppλz ζ̄ztq

ϕzpyq
P´ζ̄ztrϕzf spyq (11)

where we used (7), which implies that

@ η P C, rPz,ηr¨s “
expp´ηλzq

ϕz
Pηrϕz¨s

Lemma 11 can be partially rewritten under the form:

Lemma 12 We have

@ s P R`, PsR “ RPξs

This relation is equivalent to the generator intertwining

LR “ ξRL

Proof
Consider a test function F P A. It follows from (10) that for any test function f on V, any s P R`
and any pt, y, zq P V, we have

PsRrf spt, y, zq “ pPz,srRrf spt` s, ¨, zqspyq

“ pPz,sr rPz,´ζ̄zpt`sqrf sspyq

“ p pPz,s rPz,´ζ̄zpt`sqqrf spyq

On the other hand, we compute that

RPξsrf spt, y, zq “ rPz,´ζ̄ztrPξsrf sspyq

“ p rPz,´ζ̄ztPξsqrf spyq

so the first announced equality is a direct consequence of Lemma 11.
The second equality is obtained by differentiation with respect to s at 0`. Conversely, the first

equality is recovered from the second one by integration.
�
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Remark 13 The assumptions made before Lemma 11 are too strong, e.g. to deal with the classical
free motion Schrödinger equation, but they can be relaxed at the expense of further notations. Let
B be a Banach space of functions defined on V and containing AXB as a dense subset. Let C Ă C
be a cone containing R` and pPηqηPC be a family of continuous operators on B such that for any
η P C, pPsηqsě0 is the semi-group associated to the pregenerator ηL (acting on A X B), in the
sense of Hille-Yoshida. Make the same hypotheses for rL and pL, to get rB, pB, rC, pC, p rPηqηP rC and
p pPηqηP pC . Assume that B “ rB “ pB, C “ rC “ χC, pC Ă C and ´ζ̄ pC Ă C. Then Lemmas 11 and
12 are satisfied up to appropriate quantifications, for instance the statement of Lemma 11 requires
η, η1 P pC.

˝

The operator R will be important to construct the family of functions pFhqhą0 presented in the
introduction. More precisely, for any h ą 0 and py, zq P V ˆW , we will find an appropriate function
fh,y,z P A, concentrating around y0 for h ą 0 small and Fh will be defined by

@ pt, y, zq P V, @ x P V, Fhpt, y, z;xq B Rrfh,y,zspt, x, zq (12)

Before investigating more precisely these functions in the examples of the following sections, let
us come back to the decomposition (8). The carré du champs Γ associated to L is the bilinear
functional on AˆA defined by

@ f, g P A, Γrf, gs B Lrfgs ´ fLrgs ´ gLrf s

We compute that for any f P A,

rLrf s “
1

ϕ
pLrϕf s ´ λϕfq

“
1

ϕ
pfLrϕs ` ϕLrf s ` Γrϕ, f s ´ λϕfq

“ Lrf s ` qLrf s

where

qLr¨s B
1

ϕ
Γrϕ, ¨s

Thus the decomposition (8) is equivalent to

qL “ pχ´ 1qL` ζpL (13)

This alternative writing is particularly important when L is a diffusion generator. A Markov
generator L is of diffusion type when A is stable by composition with smooth mappings F : RÑ R
and that

@ f P A, LrF ˝ f s “ F 1pfqLrf s `
F 2pfq

2
Γrf, f s

In this context, recall that an operator K defined on A is a derivation when

@ f P A, KrF ˝ f s “ F 1pfqKrf s

The following result is well-known, see e.g. the book of Bakry, Gentil and Ledoux [1]:

Proposition 14 When L is a diffusion generator, qL is a derivation operator.

10



Assume now that V is a differential manifold and that A is the space of smooth functions.
A Markov generator L : A Ñ A is of diffusion type if and only if it is a second order operator
without zero order term. When the second order part of L does not vanish identically (which is
just asking for L not being a derivation), we deduce from Proposition 14 that it is natural to ask
for χ “ 1 in (13), if we don’t want pL to contain the same second order terms as L, up to a factor.
A derivation operator K comes from a vector field if and only if K transforms R-valued functions
into R-valued functions. Furthermore this condition is equivalent to the fact that K is a Markov
generator (leading to the deterministic dynamical system obtained by following the corresponding
vector field). Thus in this context, the existence of the decomposition (8) is equivalent to the
existence of ζ P T such that ζ̄qL comes from a vector field. When this is satisfied, we can take χ “ 1
and pL “ ζ̄qL.

3 The free motion Schrödinger equation on the line
Consider the case where V B R is endowed with the Laplacian operator L B B2 on the smooth
functions, namely on A B C8pRq. The corresponding carré du champ is the usual one:

@ f, g P A, Γrf, gs “ 2pBfqpBgq (14)

Take W B R`. To any z P W , we associate the eigenvalue λz “ ´z2, and a corresponding
eigenvector ϕz defined by

@ x P R, ϕzpxq B exppizxq (15)

Note that the eigenvector ϕz is only algebraic, in the sense that it satisfies the relation Lrϕzs “ λzϕz
everywhere on R, but ϕz does not belong to L2 space of the Lebesgue measure. For z P W zt0u, z
and ´z parametrize the same eigenvalue ´z2 and their eigenvectors ϕz and ϕ´z “ ϕz are linearly
independent. It appears that for any f P A,

@ x P R, qLzrf spxq “ 2 expp´izxqpB exppizxqqBfpxq

“ 2izBfpxq

As in the end of the previous section, it leads us to take χz “ 1, ζz “ i and pLz “ 2zB, the generator
of the (deterministic) free motion at speed 2z. With the notation of Lemma 12, ξ “ i does not
depend on z PW .

Remark 15 As an illustration of Remark 10, we could have chosen ξ “ ´i, since the corresponding
operator pL is the generator of the free motion at speed ´2z.

˝

For any z P W , the operators L “ B2 and pLz commute and Remark 13 holds, with B B L2pµq,
where µ is the usual Lebesgue measure on R, and with C B C` and pC B R`. The assumptions of
Section 2 are thus satisfied and we can apply Lemma 12. Consider a test function f on R. For any
pt, y, zq P V and s P R`, we have

PsRrf spt, y, zq “ RPisrf spt, y, zq

The left-hand side is just Rrf spt` s, y ` 2zs, zq. Furthermore, from (11), we have for t “ 0,

@ y P R, @ z P R, Rrf sp0, y, zq “ P0rf spyq

“ fpyq

so we deduce that

@ y P R, @ z P R, @ s ě 0, Rrf sps, y ` 2zs, zq “ Pisrf spyq (16)

11



Thus we have solved the free Schrödinger equation on the line, i.e. we have found an expression
for the solution u : R` ˆ R Q ps, yq ÞÑ Pisrf spyq P C of

"

up0, ¨q “ f
@ ps, yq P R` ˆ R, Bsups, yq “ iB2

qups, yq

At least if we are able to identify directly the kernel R, i.e. without just inverting (16)! It follows
from (11) that for any test function f on R,

@ pt, y, zq P V, Rrf spt, y, zq “
expp´itλzq

exppizyq
Pitrexppiz¨qf spyq (17)

It may seem that we have not made much progress, since we still have to compute Pitrϕf spyq.
Indeed, let us complete this task, just as an illustration since our goal is to by-pass such computa-
tions.

Recall that for any s ą 0 and y P R, we have the following expression for the heat kernel:

Psrf spyq “

ż

R
fpxq expp´px´ yq2{p4sqq

dx
?

4πs
(18)

By using the holomorphic extension of
?
¨ on Czp´8, 0s, the above formula is also valid for s P

Czp´8, 0s, for appropriate test functions (e.g. when f is continuous and with compact support).
It follows that

@ pt, y, zq P V, Rrf spt, y, zq “
expp´itλzq

exppizyq

ż

R
fpxq exppizxq expp´px´ yq2{p4itqq

dx
?

4πit

“

ż

R
fpxqRpt, y, z;xqdx

where

Rpt, y, z;xq B
1

?
4πit

exp

ˆ

itz2 ` izpx´ yq ` i
px´ yq2

4t

˙

Nevertheless, the main advantage of (17) is to suggest the introduction of appropriate “concen-
trating” mappings to avoid direct computations. More precisely, for any h ą 0 and py0, z0q P R2,
consider the function fh,y0,z0 given by

@ x P R, fh,y0,z0pxq B expp´iz0px´ y0q ´ px´ y0q
2{p2hqq{pπhq1{4 (19)

Extending as usual the action of Ph to probability measures, the function fh,y0,z0 can be written as

fh,y0,z0 “
?

2pπhq1{4
ϕz0py0q

ϕz0
Ph{2rδy0s (20)

We also have |fh,y0,z0 |2 “ Ph{4rδy0s and this relation explains the choice of the normalization in
(19). We deduce that for small h ą 0, |fh,y0,z0 |

2 is an approximation of the Dirac mass δy0 , since it
is the Gaussian density of mean y0 and variance h{4.

It follows from (17) (with z replaced by z0) and (20) that for all t ě 0 and x P R,

Rrfh,y0,z0spt, x, z0q “
?

2pπhq1{4
exppitz2

0qϕz0py0q

ϕz0pxq
Pit

„

ϕz0
ϕz0

Ph{2rδy0s



pxq

“
?

2pπhq1{4
exppitz2

0qϕz0py0q

ϕz0pxq
Ph{2`itrδy0spxq
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Namely, we have for any t ě 0 and x P R,

Rrfh,y0,z0spt, x, z0q “

ˆ

h

π

˙1{4
c

1

h` 2it
exp

ˆ

´iz0px´ y0q ` itz
2
0 ´

px´ y0q
2

2ph` 2itq

˙

Normalizing the time t into ht, we get

Rrfh,y0,z0spht, x, z0q “

ˆ

1

hπ

˙1{4
d

1

p1` 2itq
exp

ˆ

´iz0px´ y0q ` ihtz
2
0 ´

px´ y0q
2

2hp1` 2itq

˙

(21)

Finally we deduce from (16) that for fh,y0,z0 given by (19),

Pihtrfh,y0,z0spxq

“ Rrfh,y0,z0spht, x` 2z0ht, z0q

“

ˆ

1

hπ

˙1{4 1
?

1` 2it
exp

ˆ

´iz0px` 2z0ht´ y0q ` ihtz
2
0 ´

px` 2z0ht´ y0q
2

2hp1` 2itq

˙

“

ˆ

1

hπ

˙1{4 1
?

1` 2it
exp

ˆ

´iz0px` 2z0ht´ y0q ` ihtz
2
0 ´ p1´ 2itq

px` 2z0ht´ y0q
2

2h
?

1` 4t2

˙

In particular, we get,

@ x P R, |Pihtrfh,y0,z0spxq|
2
“

1
a

πhp1` 4t2q
exp

ˆ

´
px` 2z0ht´ y0q

2

h
?

1` 4t2

˙

which is the Gaussian density of mean y0 ´ 2z0ht and variance h
?

1` 4t2{2. This result is well-
known and corresponds to the quantification of the free motion on R with speed ´2z0, the mapping
|Pihtrfh,y0,z0s|

2 being strongly concentrated around y0 ´ 2z0ht for h ą 0 small.
Of course, we could have computed directly Pihtrfh,y0,z0spyq, starting from the formulas (18)

and (19), but the apparition of the free motion R` Q t ÞÑ y0´ 2z0t would (maybe) have been more
mysterious. Furthermore, the intertwining relation (16) imposed the form of the concentrating
mappings fh,y0,z0 .

Indeed, let us translate the above observations into the framework presented in the introduction,
to show Theorem 5. On V B RˆR, consider the unitary algebra A of continuous functions f such
that for any fixed z P R, fp¨, zq P A, namely f is globally continuous and smooth in the first
variable. Define on A the operator L given by

@ f P A, @ py, zq P V, Lrf spy, zq B pLzrfp¨, zqspyq

“ 2zByfpy, zq

It is the generator of the free motion: for any initial point py0, z0q P V, the motion generated by L
is given by

@ s ě 0, pY psq, Zpsqq B py0 ` 2z0s, z0q

Consider the generator L given by (1), a corresponding Markov process starting from pt0, y0, z0q is
X B pXpsqqsě0 B pt0 ` s, y0 ` 2z0s, z0qsě0.

As suggested by (12), define for any h ą 0, pt, y, zq P V, x P V ,

Fhpt, y, z;xq B Rrfh,y,zspt, x, zq

“

ˆ

h

π

˙1{4
d

1

ph` 2itq
exp

ˆ

´izpx´ yq ` ihtz2 ´
px´ yq2

2ph` 2itq

˙

13



Since we have

@ x P R, |Fhpht, y, z;xq|
2
“

1
a

πhp1` 4t2q
exp

ˆ

´
px´ yq2

h
?

1` 4t2

˙

Hypotheses (H1) and (H2) are satisfied. In the latter, the concentration is even strong: for any
k P Z`, any T ě 0 and any r ą 0,

lim
hÑ0`

1

hk
sup

pt,y,zqPr0,T sˆRˆR

ż

|x´y|ěr
|Fhpht, y, z;xq|

2 µpdxq “ 0

Hypothesis (H3) is a direct consequence of (16), so Theorem 5 is shown.

Remark 16 In traditional semi-classical analysis, for h ą 0 and py0, z0q P R2, the functions
gh,y0,z0 B fh,y0,z0{h are often preferred to fh,y0,z0 and lead to the following formulas valid for x P R,

Pihtrgh,y0,z0spxq “

ˆ

1

hπ

˙1{4 1
?

1` 2it
exp

ˆ

´iz0px` 2z0t´ y0q ` itz
2
0

h
´ p1´ 2itq

px` 2z0t´ y0q
2

2h
?

1` 4t2

˙

and

|Pihtrgh,y0,z0spxq|
2
“

1
a

πhp1` 4t2q
exp

ˆ

´
px` 2z0t´ y0q

2

h
?

1` 4t2

˙

It amounts to consider the process pXphsqqsě0 “ phs, Y phsq, Zphsqqsě0 starting from p0, y, z{hq,
and for this purpose, it is important that z is not confined to a compact set in the supremum in
(H2). In this way, we recover the classical motion

@ s ě 0, Y phsq “ y ` 2zs

This high frequency normalization (leading to comparison of quantum times ht, in the
above lhs, to classical times t, in the above rhs) does not seem so natural in our Markov process
context, specially when the fibers W are not vector spaces, as in the next sections.

Another manner to obtain the classical motion is to consider a small frequency normaliza-
tion and long times: consider the process pXps{hqqsě0 “ ps{h, Y ps{hq, Zps{hqqsě0 starting from
p0, y, hzq, we get

@ s ě 0, Y ps{hq “ y ` 2zs

Unfortunately, this normalization is not very useful, since the concentration property (H2) holds
only for times of order h.

˝

We will see in the next sections to which extent this approach can be extended to discrete
settings.

4 The free motion on Z
We consider now V B Z. There are two natural difference operators on Z: B` and B´, acting on
A, the space of all bounded mappings from Z to C, via

@ f P A, @ x P Z,
"

B`fpxq “ fpx` 1q ´ fpxq
B´fpxq “ fpx´ 1q ´ fpxq

14



It is immediate to check that

@ f P A, @ x P Z, B`B´fpxq “ B´B`fpxq “ ´pB` ` B´qfpxq “ 2fpxq ´ fpx` 1q ´ fpx´ 1q

We endow Z with the discrete Laplacian L “ B``B´. The corresponding carré du champ is given
by

@ f, g P A, @ x P Z, Γrf, gspxq “ pfpx` 1q ´ fpxqqpgpx` 1q ´ gpxqq (22)
`pfpx´ 1q ´ fpxqqpgpx´ 1q ´ gpxqq

Take W B r0, 2πq, seen as the set of angles of elements from T, and for any z P W , consider the
function ϕz defined by

@ x P Z, ϕzpxq B exppizxq (23)

It is an algebraic eigenvector of L associated to the eigenvalue λz “ 2pcospzq ´ 1q, but note that it
does not belong to l2pZq. For z P p0, πq, z and z` π parametrize the same eigenvalue 2pcospzq ´ 1q
and their eigenvectors ϕz and ϕ´z “ ϕz are linearly independent.

We compute that for any test function f P A,

@ x P Z, qLzrf spxq “ expp´izxqΓrexppiz¨q, f spxq

“ pexppizq ´ 1qpfpx` 1q ´ fpxqq ` pexpp´izq ´ 1qpfpx´ 1q ´ fpxqq

namely

qLz “ pexppizq ´ 1qB` ` pexpp´izq ´ 1qB´

“ pexpp´izq ´ 1qL` pexppizq ´ 1´ pexpp´izq ´ 1qqB`

“ pexpp´izq ´ 1qL` 2i sinpzqB`

So according to (13), for z P r0, πs, we can take χz “ expp´izq, ζz “ i and pLz “ 2 sinpzqB`, which
is the generator of the Markov process always jumping toward the right, with intensity 2 sinpzq.
These choices lead to ξz “ i expp´izq.

Remark 17 As another illustration of Remark 10, we could also have considered the decomposition

qLz “ pexppizq ´ 1qL´ 2i sinpzqB´

which leads to ξz “ ´i exppizq, conjugate to its previous value.
˝

For z P pπ, 2πq, we proceed similarly, except that we rather take χz “ exppizq, ζz “ i, pLz “
´2 sinpzqB´ and ξz “ i exppizq. To simplify the presentation, from now on, we restrict W to be
r0, πs. The missing part pπ, 2πq of the fibers can be treated similarly and enable to reverse the
direction of the “free motion”.

Due to the commutation properties mentioned at the beginning of this section, L and pLz com-
mute. Note also that endowing A with the supremum norm transforms it into a Banach alge-
bra and that L is bounded on A. The assumptions of Section 2 are satisfied and we can ap-
ply Lemma 12. Starting from p0, y, zq P V, the operator L generates the process ps, Y psq, zqsě0,
where pY psqqsě0 is a Markov process starting from y and whose generator is pLz. More precisely,
pY psqqsě0 “ py `Np2 sinpzqsqqsě0, where pNpsqqsě0 is a standard Poisson process starting from 0
and of intensity 1. It follows that for any test function f P A, (16) has to be replaced by

@ y P Z, @ z P R, @ s ě 0, ErRrf sps, Y psq, zqs “ Pξzsrf spyq (24)

15



where the operator R is given by (11):

@ pt, y, zq P V, @ f P A, Rrf spt, y, zq “
expp´2ipcospzq ´ 1qtq

exppizyq
Pitrexppiz¨qf spyq (25)

Thus we have found a probabilistic representation of a modified free Schrödinger equation on
the discrete line, i.e. of the solution u : R` ˆ Z Q ps, yq ÞÑ Pξzsrf spyq P C of

"

up0, ¨q “ f
@ ps, yq P R` ˆ Z, Bsups, yq “ ξzLrusps, yq

Contrary to the previous section, ξz P iR only for z P t0, πu, which corresponds to degenerate
situations, since pLz “ 0 and so Y psq “ y for all s ě 0. This was to be predicted from Remark 1,
asking in this situation for pY psqqsě0 to be a deterministic process. For z “ 0, (24) and (25) are
both equivalent to Rrf spt, y, 0q “ Pitrf spyq, for all t ě 0 and y P Z. For z “ π, (24) and (25) are
respectively equivalent to

@ t ě 0, @ y P Z, Rrf spt, y, πq “ P´itrf spyq

and

@ t ě 0, @ y P Z, Rrf spt, y, πq “
expp4itq

p´1qy
Pitrϕπf spyq

In view of Remark 4, another intriguing case is when ξz P t˘1u. Here, it corresponds to z “ π{2
and we get ξπ{2 “ 1, ϕπ{2pxq “ ix for all x P Z and λπ{2 “ ´2. In this situation we have

@ t ě 0, @ y P Z, Rrf spt, y, π{2q “
expp2itq

iy
Pitrϕπ{2f spyq

and (24) leads to a strange formula: for any f P A and y P Z,

@ s ě 0, E
„

expp2isq

iy`Np2sq
Pisrϕπ{2f spy `Np2sqq



“ Psrf spyq

Let us now see how some features of the treatment of the free motion on R presented in the
previous section can be adapted to the the present discrete setting of Z.

Following the strategy described in (12), define for any h ą 0 and py, zq P Zˆ r0, πs,

@ x P Z, fh,y,zpxq B δypxq (26)

where the Kronecker delta appears in the rhs. Note that the function fh,y,z is so concentrated
“around” y that the parameters h and z do not play a role. Next we consider, for any h ą 0,
pt, y, zq P V and x P V ,

Fhpt, y, z;xq B Rrfh,y,zspt, x, zq

“
expp´iλztq

ϕzpxq
Pitrϕzfh,y,zspxq

“
expp´iλztqϕzpyq

ϕzpxq
Pitrδyspxq

“ expp´2ipcospzq ´ 1qt` izpy ´ xqqgt,ypxq (27)

where

@ t ě 0, y P Z, @ x P Z, gt,ypxq B Pitrδyspxq

Let µ the counting measure on Z. The validity of (H1) and (H2) is provided by
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Lemma 18 For any t ě 0 and y P Z,
ÿ

xPZ
|gt,ypxq|

2
“ 1

and for any T ě 0,

lim
hÑ0`

1

h2
sup

tPr0,T s,yPZ

ÿ

xPZztyu
|gt,ypxq|

2
“ 2

Proof
Since the operator L is self-adjoint in L2pµq, the operator Pih is unitary in L2pµq. It follows that

ÿ

xPZ
|gt,ypxq|

2
“

ÿ

xPZ
|δypxq|

2

“ 1

namely the first equality of the lemma is true. The second equality is equivalent to

lim
hÑ0`

1

h2
sup

tPr0,T s,yPZ
p1´ |gt,ypyq|

2
q “ 2 (28)

By definition of Pih “ exppihLq on the Banach algebra A, for any y, x P Z, we have the following
expansion for h ą 0 small,

Pihrδyspxq “ δypxq ` ihLrδyspxq `
pihq2

2
L2rδyspxq ` ˝ph

2q

where the term ˝ph2q is uniform over y, x P Z. In particular, for x “ y, we get

gt,ypyq “ 1´ 2ih´ 3h2 ` ˝ph2q

because

Lrδyspyq “ Lpy, yq “ ´2

L2rδyspyq “
ÿ

y1PZ
Lpy, y1qLpy1, yq

“ Lpy, yq2 ` Lpy, y ` 1qLpy ` 1, yq ` Lpy, y ´ 1qLpy ´ 1, yq

“ 6

We deduce that

|gt,ypyq|
2
“

ˇ

ˇ1´ 2hi´ 3h2 ` ˝ph2q
ˇ

ˇ

2

“
`

1´ 3h2
˘2
` p2hq2 ` ˝ph2q

“ 1´ 2h2 ` ˝ph2q

and the announced result follows
�

Hypothesis (H3) is a direct consequence of (24) applied with f replaced by fh,y,z, since

@ h ą 0, @ py, zq P Zˆ r0, πs, @ x P Z, Fhp0, y, z;xq “ fh,y,zpxq

and since under Pp0,y,zq,

@ s ě 0, Xpsq “ ps, y `Np2 sinpzqsq, zq (29)
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Remark 19 In the spirit of Remark 16, it is now only possible to consider the not very convincing
small frequency normalization: replacing in (29) s by s{h and z by zh (assuming z P r0, π{hs), as h
goes to 0`, the base component converges toward the process py `Np2zsqqsě0, which is a Poisson
process whose rate 2z can be as high as wanted (for h small).

˝

Remark 20 It is tempting to play with the objects at hand, to see how the results are affected by
their modifications. For instance, we could replace the operator rL defined in (8) by p1´ εqrL` εL,
where ε P p0, 1q. Then we have

rLpεq “ χpεqL` ζpLpεq

with

rLpεq B
p1´ εqrL` εL

aε
aε B |ε` p1´ εqχ|

χpεq B
ε` p1´ εqχ

aε
P T

pLpεq B
1

aε
pL

It follows that ξpεq “ ξpεχ̄` p1´ εqq{aε. In the setting of the present section, we get for z P r0, πs,

ξpεqz “ ξzpε exppizq ` p1´ εqq{ |ε exppizq ` p1´ εq|

and this complex number can be “more imaginary” than ξz. Remark 4 may then let us believe
that is advantageous to consider such transformations with ε P p0, 1q. But it is wrong, because
computing the corresponding operator Rpεq and the functions pF pεqh qhą0 (via (12) with the functions
fh,y,z given by (26)), we get that (H2) is not satisfied, the concentration being only of order 0.

˝

5 The free motions on tori
After proving Theorems 7, 8 and 9 in their respective torus settings, we will discuss generally about
the tensorization of multi-dimensional quantification.

The case of V “ Zn, for a given n P Nzt1u, is very similar to the situation of Z described in the
previous section. The difference operators B´ and B` are extended to act on Zn, which is endowed
with the discrete Laplacian L B B´B` “ B`B´ “ B´ ` B` (when n “ 2, we have furthermore
B´ “ B` and L “ 2B`). The underlying Banach algebra An is just the usual algebra of all C-valued
functions defined on Zn. The carré du champs of L is still given by (22), where x takes values in
Zn. Let W BWn B

2π
n J0, n´ 1K and consider for any z PWn, the function

@ x P Zn, ϕzpxq B exppizxq (30)

which is an eigenvector of L associated to the eigenvalue λz B 2pcospzq ´ 1q. All the computations
and observations of the previous section are still valid, once Z has been replaced by Zn and r0, 2πq
by Wn. In particular, for z PWn X r0, πs “ p2π{nqJ0, tn{2uK (where t¨u stands for the integer part),
we can choose pLz “ 2 sinpzqB`, with χz “ expp´izq, ζz “ i and ξz “ i expp´izq. Again we
can apply Lemma 12: starting from p0, y, zq P V “ R` ˆ Zn ˆWn, the operator L generates the
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process ps, Y psq, zqsě0, where pY psqqsě0 is a Markov process starting from y and whose generator
is pLz. Namely, pY psqqsě0 “ py ` Np2 sinpzqsqrnsqsě0, where pNpsqqsě0 is a standard Poisson
process starting from 0 and of intensity 1, and where rns means modulo n. In conformity with
(1), L B pLz is the generator of the process pY psq, zqsě0. Going through the same constructions of
R, pfh,y,zqhą0,yPZn,zPWn and pFhqhą0, given respectively in (25), (26) and (12) (see also (27)), we
conclude to the validity of Theorem 7.

Remark 21 Contrary to Remarks 16 and 19, neither the high frequency nor the fruitless small
frequency normalizations are possible for the above quantification, since Wn is finite.

˝

The case of V “ R{p2πZq, has similarities with both the situations of R and Zn. We consider
the Laplacian operator L “ B2 on the algebra A of smooth functions defined on R{p2πZq. Its carré
du champs is given by (14). Take W “ Z, to any z P Z, we associate the eigenvalue λz “ ´z2 and
a corresponding eigenvector ϕz is defined by

@ x P R{p2πZq, ϕzpxq B exppizxq

As in Section 3, for any z P Z, we take χz “ 1, ζz “ i, ξz “ i and pLz “ 2zB. Lemma 12 can be
applied: starting from p0, y, zq P V “ R` ˆ R{p2πZq ˆ Z, the operator L generates the process
pXpsqqsě0 “ ps, y ` 2zs, zqsě0. In conformity with (1), L B pLz is the generator of the process
py ` 2zs, zqsě0. Going through the same constructions of R, pfh,y,zqhą0,yPR{p2πZq,zPZ and pFhqhą0,
given respectively in (17), (20) (in both equations, pPtqtě0 is now the heat semi-group generated
by L on R{p2πZq) and (12), we conclude to the validity of Theorem 9.

Remark 22 Similarly to the first part of Remark 16, it is possible to consider a high fre-
quency normalization for the above quantification. More precisely, for given z P R, consider
Hz B th ą 0 : z{h P Zu. We get that for h P Hz, the base component of the process
pXphsqqsě0 “ phs, Y phsq, Zphsqqsě0 starting from p0, y, z{hq is equal to py ` 2zsqsě0, the classi-
cal free motion on R{p2πZq.

˝

We now come to the situation of the free motions on finite multidimensional tori. With the nota-
tions introduced before Theorem 8, consider the Laplacian operator L B

ř

jPJmK L
pjq, on the space A

of all C-valued functions defined on V . For any z B pz1, z2, ..., zmq PW , λz B 2
ř

jPJmKpcospzjq´ 1q
is an eigenvector of L associated to the eigenfunction ϕz given by

@ x B px1, x2, ..., xmq P V, ϕzpxq B exp

¨

˝i
ÿ

jPJmK

zjxj

˛

‚

Considering the associated Doob transform rLz defined as in (7), (8) must be replaced by

rLz “
ÿ

jPJmK

χzjL
pjq ` ipLz (31)

where

@ j P JmK, χzj B expp´izjq

pLz B 2
ÿ

jPJmK

|sinpzjq| B
pjq,εj

@ j P JmK, εj B signpsinpzjqq

@ f P A, @ x P V, @ j P JmK, @ ε P t´1, 1u, Bpjq,εfpxq B fpx` εejq ´ fpxq
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Taking into account that the operators Lp1q, Lp2q, ..., Lpmq and Lz all commute, the computations
of Section 2 can be extended to this situation. Consider L the operator given in (9) and replace
the definition of the operator R from V to V given in (11) by

@ pt, y, zq P V, @ f P A,

Rrf spt, y, zq B
exp

´

2t
ř

jPJmKpcospzjq ´ 1qζ̄zj

¯

ϕzpyq
exp

¨

˝´t
ÿ

jPJmK

ζ̄zjL
pjq

˛

‚rϕzf spyq

Lemma 12 has to be modified into

Lemma 23 We have

@ s P R`, exppsLqR “ R exp

¨

˝s
ÿ

jPJmK

ξzjL
pjq

˛

‚

with ξzj B i expp´izjq, for all j P JmK.
This relation is equivalent to the generator intertwining

LR “ R
ÿ

jPJmK

ξzjL
pjq

The proof of Theorem 9 now follows the same track as before: the mappings pfh,y,zqhą0,yPV,zPW

and pFhqhą0 being defined respectively in (26) and (12).

The above presentation shows that the method based on the Doob transform with respect to
complex valued eigenvectors can be applied in multi-dimensional settings. It would be interesting
to investigate relations such as (31) in more general situation, when the operators entering in the
decomposition are not commuting, even in one dimension.

Nevertheless, note that multi-dimensional quantification can be directly tensorized, without
going through the Doob transform arguments. In the framework of the introduction, consider two
families pLpjql qjPJl , for l P t1, 2u and two disjoint finite index sets J1 and J2, of reversible Markov
generators on L2pVl, µl,Cq, where Vl is the state space endowed with the measure µl. Assume that
they are respectively the multidimensional quantifications of operators Ll, whose state space is Vl,
in the sense that (H1), (H2) and (H4) are satisfied. Define

V B V1 ˆ V2

µ B µ1 b µ2

J B J1 \ J2

@ j P J, Lpjq B

#

L
pjq
1 , if j P J1

L
pjq
2 , if j P J2

V B V1 ˆ V2

L B L1 ` L2

where L1 (respectively L2) acts on the first (resp. second) component of V. We get then:

Proposition 24 The family pLpjqqjPJ is the multi-dimensional quantification of L.

Proof
For l P t1, 2u, let pFl,hqhą0 be a family of mappings such that (H1), (H2) and (H4) are satisfied, for
the multidimensional quantification of the operator Ll by pL

pjq
l qjPJl . Define the family pFhqhą0 by

tensorization of these families: for any h ą 0,

@ t ě 0, @ py1, z1q P V1, @ py2, z2q P V2, Fhpt, py1, y2q, pz1, z2qq B F1,hpt, y1, z1qF2,hpt, y2, z2q
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Hypotheses (H1) and (H2) are clearly satisfied, once V is endowed with the distance ρ given, e.g.,
by

@ px1, x2q, py1, y2q P V, ρppx1, x2q, py1, y2qq B maxpρ1px1, y1q, ρ2px2, y2qq

where ρ1 and ρ2 are the underlying distance on V1 and V2. Hypothesis (H4) is also true, be-
cause a process X B ps, Y psq, Zpsqqsě0, associated to L “ Bs ` L and starting from a point of
V, can be written as ps, Y1psq, Y2psq, Z1psq, Z2psqqsě0 where X1 B ps, Y1psq, Z1psqqsě0 and X2 B

ps, Y2psq, Z2psqqsě0 are independent Markov processes respectively generated by L1 “ Bs ` L1 and
L2 “ Bs ` L2 (in the sense of martingale problems). One should take in (H4), for any j P J ,
ξ
pjq
0 B ξ

pjq
l,0 when j P Jl, and ξ

pjq
0 depends only on pyl,0, zl,0q, when py0, z0q “ py1,0, y2,0, z1,0, z2,0q,

with obvious notations.
�

Of course, the above construction can be extended to any finite number of factor spaces. In
particular, we can take factor spaces coming from any of the examples given in Theorem 5, 6, 7 or
9. Theorem 8 has only taken factor spaces coming from Theorem 7. Note that when the factors all
come from Theorem 5 and 9, there is no need for the notion of multi-dimensional quantification,
since quantification is sufficient. Indeed the product satisfies (H3), with L B

ř

jPJ L
pjq, as we have

ÿ

jPJ

ξ
pjq
0 Lpjq “ iL
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