Variables representation
plotVar(result, pch = 20)
The use of a sparse IPCA would be more appropriate to interpret the results.
Sparse IPCA analysis
sparse IPCA directly implements soft-thresholding on the independent loading vectors, similar to the sPCA implemented mixOmics.
sipca.result <- sipca(X, ncomp = 3, mode = "deflation", scale = FALSE, keepX = c(50,50,50)) sipca.result$kurtosis [1] 10.6698119 7.215954 0.5875141 ## plot variables plotVar(sipca.result)
R_script:
References
- Yao F., Coquery J., Lê Cao K.-A. (2012) Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets, BMC Bioinformatics 13:24. [link]
Pages: 1 2