sPLS-DA analysis for 1 factor
We arbitrarily selected 200 variables per dimension, but a more objective tuning would involve using the tune.multilevel.R function (here).
data(data.simu) X.simu <- data.simu$X stimulation <- data.simu$stimu repeat.simu <- data.simu$sample result.1level <- multilevel(X.simu, cond = stimulation, sample = repeat.simu, ncomp = 3, keepX = c(200,200,200), tab.prob.gene = NULL, method = 'splsda') # sample representation plot3dIndiv(result.1level, col = as.numeric(data.simu$stimu), cex = 10);
The 3D plots for samples:
pheatmap.multilevel(result.1level, col_sample=col.sample, col_stimulation=col.stimu, label_annotation=NULL, border=FALSE, clustering_method="ward", show_colnames = FALSE, show_rownames = TRUE, fontsize_row=2)
The pheatmap.multilevel function generates the following chart:
In this chart, the genes are displayed in rows and the sample in columns. The class of each sample is labelled at the top.