An introduction to random forests

Eric Debreuve / Team Morpheme

Institutions: University Nice Sophia Antipolis / CNRS / Inria
Labs: I3S / Inria CRI SA-M / iBV
Outline

• Machine learning
• Decision tree
 • Bagging
 • Random decision trees
• Kernel-Induced Random Forest (KIRF)
• Byproducts
 • Out-of-bag error
 • Variable importance
Machine learning

• Learning/training: build a classification or regression rule from a set of samples

• Prediction: assign a class or value to new samples
(Un)Supervised learning

- **Supervised**
 - Learning set = \{ (sample [acquisition], class [expert]) \}

- **Unsupervised**
 - Learning set = unlabeled samples

- **Semi-supervised**
 - Learning set = some labeled samples + many unlabeled samples
Ensemble learning

• Combining weak classifiers (of the same type)...
 • ... in order to produce a strong classifier
 • Condition: diversity among the weak classifiers

• Example: Boosting
 • Train each new weak classifier focusing on samples misclassified by previous ones

 • Popular implementation: AdaBoost
 • Weak classifiers: only need to be better than random guess
Outline

• Machine learning

▷ • Decision tree
 • Random forest
 • Bagging
 • Random decision trees
 • Kernel-Induced Random Forest (KIRF)

• Byproducts
 • Out-of-bag error
 • Variable importance
Decision tree

- **Root node**
 - Entry point to a collection of data

- **Inner nodes (among which the root node)**
 - A question is asked about data
 - One child node per possible answer

- **Leaf nodes**
 - Correspond to the decision to take (or conclusion to make) if reached

- **Example: CART – Classification and Regression Tree**
 - Labeled sample
 - Vector of variable/feature values + class label
 - Binary decision tree
 - Top–down, greedy building...
 - ... by recursively partitioning the feature space into hyper–rectangles
 - Similarity with weighted kNN

- ** Normally, pruning**
 - To avoid over–fitting of learning data
 - To achieve a trade–off between prediction accuracy and complexity
Decision tree > CART > Building

• All labeled samples initially assigned to root node
• \(N \leftarrow \) root node
• With node \(N \) do
 • Find the feature \(F + \) threshold value \(T \)...
 • ... that split the samples assigned to \(N \) into 2 subsets \(S_{\text{left}} \) and \(S_{\text{right}} \)...
 • ... so as to maximize the label purity within these subsets
 • Assign \((F,T)\) to \(N \)
 • If \(S_{\text{left}} \) and \(S_{\text{right}} \) too small to be splitted
 • Attach child leaf nodes \(L_{\text{left}} \) and \(L_{\text{right}} \) to \(N \)
 • Tag the leaves with the most present label in \(S_{\text{left}} \) and \(S_{\text{right}} \), resp.
 • else
 • Attach child nodes \(N_{\text{left}} \) and \(N_{\text{right}} \) to \(N \)
 • Assign \(S_{\text{left}} \) and \(S_{\text{right}} \) to them, resp.
 • Repeat procedure for \(N = N_{\text{left}} \) and \(N = N_{\text{right}} \)
(Im)Purity
- Quality measure applied to each subset S_{left} and S_{right}
- Combination of the measures (e.g., weighted average)

Examples
- Gini index = $\sum_{l=1}^{L} f_l (1 - f_l)$
- Entropy = $- \sum_{l=1}^{L} f_l \log_2 f_l$
- Misclassification error = $1 - \max_{l \in [1..L]} f_l$
Decision tree > CART > Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>CART</th>
<th>kNN</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsically multiclass</td>
<td>✅</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>Handles Apple and Orange features</td>
<td>✅</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Robustness to outliers</td>
<td>✅</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>Works w/ "small" learning set</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>Scalability (large learning set)</td>
<td>✅</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>Prediction accuracy</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>Parameter tuning</td>
<td>✅</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Outline

• Machine learning

• Decision tree

• Random forest
 • Bagging
 • Random decision trees

• Kernel-Induced Random Forest (KIRF)

• Byproducts
 • Out-of-bag error
 • Variable importance
Random forest

• **Definition**
 - Collection of unpruned CARTs
 - Rule to combine individual tree decisions

• **Purpose**
 - Improve prediction accuracy

• **Principle**
 - Encouraging diversity among the tree

• **Solution: randomness**
 - Bagging
 - Random decision trees (rCART)
Random forest > Bagging

• Bagging: Bootstrap aggregation

• Technique of ensemble learning...
 • ... to avoid over-fitting
 • Important since trees are unpruned
 • ... to improve stability and accuracy

• Two steps
 • Bootstrap sample set
 • Aggregation
Random forest > Bagging > Bootstrap

• L: original learning set composed of p samples

• Generate K learning sets L_k...
 • ... composed of q samples, $q \leq p$...
 • ... obtained by uniform sampling with replacement from L
 • In consequence, L_k may contain repeated samples

• Random forest: $q = p$
 • Asymptotic proportion of unique samples in $L_k = 100 \times (1 - 1/e) \approx 63\%$
 • → The remaining samples can be used for testing
Random forest > Bagging > Aggregation

- **Learning**
 - For each L_k, one classifier C_k (rCART) is learned

- **Prediction**
 - S: a new sample
 - Aggregation = majority vote among the K predictions/votes $C_k(S)$
Random forest > Random decision tree

• All labeled samples initially assigned to root node
• \(N \leftarrow \text{root node} \)

• With node \(N \) do
 • Find the feature \(F \) among a random subset of features + threshold value \(T \)...
 • ... that split the samples assigned to \(N \) into 2 subsets \(S_{\text{left}} \) and \(S_{\text{right}} \)...
 • ... so as to maximize the label purity within these subsets
 • Assign \((F,T)\) to \(N \)
 • If \(S_{\text{left}} \) and \(S_{\text{right}} \) too small to be splitted
 • Attach child leaf nodes \(L_{\text{left}} \) and \(L_{\text{right}} \) to \(N \)
 • Tag the leaves with the most present label in \(S_{\text{left}} \) and \(S_{\text{right}} \), resp.
 • else
 • Attach child nodes \(N_{\text{left}} \) and \(N_{\text{right}} \) to \(N \)
 • Assign \(S_{\text{left}} \) and \(S_{\text{right}} \) to them, resp.
 • Repeat procedure for \(N = N_{\text{left}} \) and \(N = N_{\text{right}} \)

• Random subset of features
 • Random drawing repeated at each node
 • For \(D\)-dimensional samples, typical subset size = \(\text{round}(\sqrt{D}) \) (also \(\text{round}(\log_2(x)) \))
 • \(\rightarrow \) Increases diversity among the rCARTs + reduces computational load

• Typical purity: Gini index
Random forest > Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>RF</th>
<th>CART</th>
<th>kNN</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsically multiclass</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Handles Apple and Orange features</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Robustness to outliers</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Works w/ "small" learning set</td>
<td></td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Scalability (large learning set)</td>
<td></td>
<td></td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Prediction accuracy</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Parameter tuning</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>
Random forest > Illustration

1 rCART

10 rCARTs

100 rCARTs

500 rCARTs
Random forest > Limitations

• Oblique/curved frontiers
 • Staircase effect
 • Many pieces of hyperplanes

• Fundamentally discrete
 • Functional data? (Example: curves)
Outline

• Machine learning

• Decision tree

• Random forest
 • Bagging
 • Random decision trees

▷ • Kernel-Induced Random Forest (KIRF)

• Byproducts
 • Out-of-bag error
 • Variable importance
Kernel–Induced Random Forest (KIRF)

• **Random forest**
 - Sample S is a vector
 - Features of $S = \text{components of } S$

• **Kernel–induced features**
 - Learning set $L = \{ S_i, i \in [1..N] \}$
 - Kernel $K(x,y)$
 - Features of sample $S = \{ K_i(S) = K(S_i, S), i \in [1..N] \}$
 - Samples S and S_i can be vectors or functional data
Kernel > Kernel trick

• **Kernel trick**
 • Maps samples into an inner product space...
 • ... usually of higher dimension (possibly infinite)...
 • ... in which classification (or regression) is easier
 • Typically linear

• **Kernel \(K(x, y) \)**
 • Symmetric
 • Positive semi–definite (Mercer's condition):
 \[
 \int \int f(x) K(x, y) f(y) \, dx \, dy \geq 0
 \]
 • \(K(x, y) = \langle \varphi(x), \varphi(y) \rangle \)

 • Note: mapping needs not to be known (might not even have an explicit representation; e.g., Gaussian kernel)
Kernel > Examples

• Polynomial (homogeneous): \(K(x, y) = (x \cdot y)^d \)

• Polynomial (inhomogeneous): \(K(x, y) = (x \cdot y + 1)^d \)

• Hyperbolic tangent: \(K(x, y) = \tanh(\alpha x \cdot y + \beta) \)

• Gaussian: \(K(x, y) = \exp(-\gamma |x - y|^2) \)

 • Function of the distance between samples
 • Straightforward application to functional data of a metric space
 • E.g., curves
KIRF > Illustration

- **Gaussian kernel**
 - Some similarity with vantage-point tree

Reminder: RF w/ 100 rCARTs
KIRF > Limitations

• **Which kernel?**
 - Which kernel parameters?

• **No “orange and apple” handling anymore**
 - \((x \cdot y \text{ or } (x - y)^2)\)

• **Computational load (kernel evaluations)**
 - Especially during learning

• **Needs to store samples**
 - (Instead of feature indices in Random forest)
Outline

• Machine learning

• Decision tree

• Random forest
 • Bagging
 • Random decision trees

• Kernel-Induced Random Forest (KIRF)

• Byproducts
 • Out-of-bag error
 • Variable importance
Byproduct > Reminder

• **To grow one rCART**
 • Bootstrap sample set from learning set L
 • Remaining samples
 • Called out-of-bag samples
 • Can be used for testing

• **Two points of view**
 • For one rCART, out-of-bag samples = L \ Bootstrap samples
 • Used for variable importance
 • For one sample S of L, set of rCARTs for which S was out-of-bag
 • Used for out-of-bag error
• For each sample S of the learning set
 • Look for all the rCARTs for which S was out-of-bag
 • Build the corresponding sub-forest
 • Predict the class of S with it
 • Error = is prediction correct?

• Out-of-bag error = average over all samples of S
 • Note: predictions not made using the whole forest...
 • ... but with some aggregation

• Provides an estimation of the generalization error
 • Can be used to decide when to stop adding trees to the forest
Byproduct > Variable importance

• For each rCART
 • Compute out-of-bag error OOB_{original}
 • Fraction of misclassified out-of-bag samples
 • Consider the i^{th} feature/variable of the samples
 • Randomly permute its values among the out-of-bag samples
 • Re-compute out-of-bag error $OOB_{\text{permutation}}$
 • rCART-level importance$(i) = OOB_{\text{permutation}} - OOB_{\text{original}}$

• Variable importance$(i) =$ average over all rCARTs
 • Note: rCART-based errors (no aggregation)
 • Avoid attenuation of individual errors
An introduction to random forests

Thank you for your attention