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Chapitre 1

Introduction/Notations/Preliminary

1.1 Notations

On the whole we shall work on a probability space (Ω,F ,P). The random variable
will take value on a set E. The set E will denote a Polish space, that is a metrizable
complete separable space. A separable space is a topological space that contains a dense
and at most countable subset, i.e., it contains a finite or countable set of points whose
closure is equal to the entire topological space.

— We denote by B(E) the set of Borel sets on E.
— M1(E) will denote the set of probability measures on E
— C(E) will denote the set of continuous functions from E to R
— Cc(E) ⊂ C(E) will denote the continuous functions on E with compact support
— Cb(E) ⊂ C(E) will denote the bounded continuous functions on E
— If X : Ω → E is a random variable (r.v), we denote L(X) the law of X and we

denote

E(f(X)) =

∫
E

f(x)dµ(x),

where µ = L(X). We shall also use the notation

µ(f) =

∫
E

f(x)dµ(x)

— For a r.v X valued in Rd, we denote

ΦX(ξ) = E[ei〈ξ,X〉],

for all ξ ∈ Rd. This is the so-called characteristic function.
Recall the usual definition of convergence in probability measure

Definition 1. A sequence of random variable (Xn) defined on (Ω,F ,P) and valued in E
converge in law (or in distribution) to a r.v X if

lim
n

E(f(Xn)) = E(f(X)),

for all f ∈ Cb(E). We denote

Xn
L−→

n→∞
X
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Let us recall the link between convergence in law and vague or tight convergence

Definition 2. A sequence of measure (µn) converges tightly to a measure µ if∫
fdµn →

n→∞

∫
fdµ

for all f ∈ Cb(E).
A sequence of measure (µn) converges vaguely to a measure µ if∫

fdµn →
n→∞

∫
fdµ

for all f ∈ Cc(E)

It is then clear that
Tight CV⇒ Vague CV

but the converse is not true. Indeed consider (δn).
We leave the following result as an exercize

Vague CV + µn(Rd)→ µ(Rd)⇒ Tight CV

Recal that if V is a topological vector space, the space V ∗ denote the set of continuous
linear form.

Definition 3. We say that a sequence (xn) converges weakly to x in V if for all ` ∈ V ∗

`(xn) −→
n→∞

`(x)

We say that a sequence `n converges ∗ weakly to ` on V ∗ if for all x ∈ V

`(xn) := 〈ln, x〉 −→
n→∞
〈`, x〉.

Recall that when V = (C0(E), ‖.‖∞), we have V ∗ is the set of Borelian measure which
are signed and finite.

Then essentially we have

CV in law ≡ Tight CV on M1(E) (1.1)

≡ Vague CV on M1(E) towards limits on M1(E) (1.2)

≡ ∗weak CV with V = (C0(E), ‖.‖∞) restricted to M1(E) (1.3)

The following proposition can be useful

Proposition 1. Let H be a dense subset of
(
C0(Rd), ‖·‖∞

)
. Let µ and (µn)n≥0, probability

measures on
(
Rd,B(Rd)

)
.

Then

µn
tightly−→
n→∞

µ ⇔ ∀ϕ ∈ H, lim
n→∞

∫
ϕdµn =

∫
ϕdµ.
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1.2 Warm-up

In this section, the aim is to motivate the whole lecture by making a first link between
the well-known Central Limit Theorem and the Brownian motion. The complete link
figured out by the so called Donsker’s Theorem will be a red thread during this lecture.
We start by recalling the result of central limit theorem by giving different proofs. A
important result used in the proof is the Levy Theorem.

Theorem 2. (Lévy).

1. If Xn
L−→ X then ∀ξ ∈ Rd, limn→∞ΦXn(ξ) = ΦX(ξ).

2. If there exists a function Φ : Rd → C continuous in 0 such that for all ξ ∈ Rd,

lim
n→∞

ΦXn(ξ) = Φ(ξ),

then there exists a unique probability measure µ on
(
Rd,B(Rd)

)
such that Φ = µ̂.

Moreover µn
tight−→µ and if X is a r.v of law µ we have Xn

L−→X.

Theorem 3. Let (Xn)n≥0 be a sequence of i.i.d r.v valued in R with

E[X1] = 0, E[X2
1 ] = σ2.

Denote for all n ∈ N∗

Sn =
n∑
i=1

Xi,

then
Sn√
n

L−→N (0, σ2)

We shall need a Lemma which we shall see later is related to the relative compactness.

Lemma 4.

lim
K→∞

sup
n≥1

P
[∣∣∣∣ Sn√n

∣∣∣∣ ≥ K

]
= 0

Démonstration. It is a consequence of Byenaimé Tchebychev.

Démonstration. First proof : with characteristic function By independance, we have
for all t ∈ R

E
[
e
it Sn√

n

]
=

(
E[e

it
X1√
n ]
)n

=

(
1− t2

2n
(1 + ◦(1))

)n
Then

lim
n→∞

E[e
it Sn√

n ] = e−t
2/2 = E[eitN ].

The Levy Theorem yields the result. Note that here we have identified the limit charac-
teristic function then it is automatically continuous in 0. Hidden by this continuity there
is an important fact of relative compactness.
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Second proof : with Lindberg swapping trick. For this proof, we shall suppose
that E[|X1|3] <∞. An obvious observation is that if X1 ∼ N (0, σ2) then

Sn√
n
∼ N (0, σ2)

and the convergence is straightforward. Now let us consider φ ∈ C3
c (R), and consider a

sequence of i.i.d r.v (Ni)i∈N∗ where N1 ∼ N (0, σ2). We suppose them independent of the
sequence (Xi)i∈N∗ . Let N ∼ N (0, σ2), as already said we have

N L
=

n∑
i=1

Ni
√
n

:= SNn

Let us define for i = 1, . . . , n

Sin =
i∑

j=1

Xj +
n∑

j=i+1

Nj

Let us check that we have
Sn = Snn , SNn = S0

n

and
Si+1
n = Ŝin +Xi+1, Sin = Ŝin +Ni+1

where we have defined

Ŝin =
i∑

j=1

Xj +
n∑

j=i+2

Nj ⊥⊥ (Xi+1,Ni+1),

where the symbol ⊥⊥ means independent.
Using a telescopic sum and a Taylor formula, we have

E
[
φ

(
Sn√
n

)
− φ(N )

]
= E

[
φ

(
Sn√
n

)
− φ

(
S0
n√
n

)]
=

n−1∑
i=0

E
[
φ

(
Si+1
n√
n

)
− φ

(
Sin√
n

)]

=
n−1∑
i=0

E

[
φ

(
Ŝin +Xi+1√

n

)
− φ

(
Ŝin +Ni+1√

n

)]

=
n−1∑
i=0

E

[
φ′

(
Ŝin√
n

)(
Xi+1 −Ni+1√

n

)
+

1

2
φ′′

(
Ŝin√
n

)
X2
i+1 −N 2

i+1

n

+O(‖φ′′′‖∞)
|Xi|3 + |Ni+1|3

n3/2

]
= O(‖φ′′′‖∞)

n−1∑
i=0

E
[
|Xi|3 + |Ni+1|3

n3/2

]
= O(‖φ′′′‖∞)E

[
|X1|3 + |N1|3√

n

]
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Then

lim
n→∞

E
[
φ

(
Sn√
n

)
− φ(N )

]
= 0

By density of Cc into C3
c for the norm ‖.‖∞ this limit holds for all φ ∈ Cc. The passage

from Cc to Cb is more tricky. First note that C̄c = C0 and then does not give Cb. But we
shall use the Lemma. Indeed let φ ∈ Cb. For all K ≥ 0 there exists a function fK ∈ Cc

such that fK = 1 on [−K,K] and fK = 0 on [−(K + 1), K + 1]c. then we can consider

φ = φfK + φ(1− fK)

such that φfK ∈ Cc∣∣∣∣E [φ( Sn√
n

)]
− E[φ(N )]

∣∣∣∣
≤

∣∣∣∣E [φfK ( Sn√
n

)]
− E[φfK(N )]

∣∣∣∣+

∣∣∣∣E [φ( Sn√
n

)
(1− fK)

]∣∣∣∣+ |E [φ (N ) (1− fK)]|

≤
∣∣∣∣E [φfK ( Sn√

n

)]
− E[φfK(N )]

∣∣∣∣+ ‖Φ‖∞
(

sup
n≥1

P
[∣∣∣∣ Sn√n

∣∣∣∣ ≥ K

]
+ P[|N | ≥ K]

)
Then take the limsup in n→∞ next in K →∞ yields the result.

Theorem 5. Let 0 = t0 < t1 < . . . < tk, then(
Sbntjc√
n
, j = 1, . . . , k

)
L→

n→∞

(
j∑
i=1

√
ti − ti−1Ni, j = 1, . . . , k

)

or in an equivalent way(
Sbntjc − Sbntj−1c√

n
, j = 1, . . . , k

)
L→

n→∞

(√
tj − tj−1Nj, j = 1, . . . , k

)
But we could look at (

Sbntc√
n
, t ≥ 0) or the affine interpolation (Snt , t ≥ 0). It is then

natural to address the question wether a limit theorem can be established for the whole
trajectory and not only for a finite number of time.

Then let us speak about the limit object which is the so-called Brownian motion.

Definition 4. A one dimensionnal standard Brownian motion is a stochastic process
(Bt, t ≥ 0) such that

1. B0 = 0

2. t→ Bt are almost surely continuous from R+ to R
3. For all 0 = t0 < t1 < . . . < tk, (Btj − Btj−1

, j = 1, . . . , k) are independant
increments of law N (0, tj − tj−1)

Within this definition, it is not clear that such a process exists. Assuming the existence
we want to promote the previous theorem to

(Snt , t ≥ 0)
L−→

n→∞
(Bt, t ≥ 0)
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which means that for all continuous and bounded functions F : C(R+) 7→ R we have

E
[
F

(
Sbn.c√
n

)]
→n→∞ E[F (B.)].

By example, for k > 0
F (f) = min(sup

[0,T ]

|f(t)|, k)
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Chapitre 2

Tight convergence in M1(E)

2.1 Polish space, examples and counter-examples

The typical set that we shall consider during the whole lecture are Polish spaces (as
already mentioned). Recall the exact definition.

Definition 5. A topological polish space E is said to be polish when

1. Metrisable : there exists d : E × E → R+ a distance which induce the same
topology than the one of E.

2. Complete : i.e all Cauchy sequences are convergent.

3. Separable : there exists a dense and countable family {xn, n ∈ N} in E, that is
{xn, n ∈ N} = E

Remark 1. Note that sometimes the distance is explicit and tractable. In this sense (E, d)
is a natural metric space. Nevertheless, when the distance is neither explicit nor tractable,
knowing that E is metrizable allows to exploit several properties (namely convergent
subsequences).

Remark 2. The separability can be addressed from a topological point of view or from a
metric point of view :

— Metric : for all ε > 0, for all x ∈ E there exists n ∈ N, such that d(xn, x) ≤ ε.
— Topologic : for all x ∈ E and for all neighborhood V of E, there exists n ∈ N such

that xn ∈ V .

Let us present some examples
— E = Rd with its natural topology is Polish. The distance is d(x, y) = ‖x − y‖2.

The separability comes from Qd

— All compact metric spaces (E, d) is Polish.
— For all T > 0, the space E = C([0, T ],R) is Polish for d = ‖.‖∞. Consider

Q[X] =
⋃
nQn[X] is countable. For the dense character, one can invoque the

Stone Weierstrass Theorem.
— A Hilbert space (E, ‖.‖2) with a countable basis is Polish.
— A product of Polish space is Polish
— C(R+,Rd) equipped with the uniform convergence on compact is Polish.
For counterexample
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Lemma 6. Let (E, d) a metric space. Suppose that there exist {xi}i∈I such that there
exist δ > 0 such that for all (i, j) ∈ I2 i 6= j ⇒ d(xi, xj) ≥ δ. Then if I is not countable
then E is not separable.

— E = `∞(N) with the uniform topology. Consider {0, 1}N.
— E = (L∞(R), ‖.‖∞). Indeed one can inject isometrically (`∞(N), ‖.‖∞)
— E = (Cb(R+), ‖.‖∞)

2.2 Tightness and Prokhorov Theorem

The notion of tightness is crucial in the rest of the lecture. This notion is enlighted
by the Prokhorov Theorem that we shall prove later since it needs a fine understanding
of the topology of M1(E).

Definition 6. A family F ⊂ M1(E) is said to be tight if for all ε > 0 there exists a
compact set K ⊂ E such that

sup
µ∈F

µ(E \K) ≤ ε

In other words up to a small error the mass of all measures µ ∈ F is concentrated on
a compact set which is common for all measures µ ∈ F .

Proposition 7. Let E be a Polish space. All finite family of M1(E) is tight.

Démonstration. Assume that we have shown that singletons are tight. Then consider F =
{µ1, . . . , µk}, and denote Ki the compact associated to µi. The compact set K =

⋃n
i=1Ki

will satisfy the tightness property for F .
Let us show now that a singleton is tight. Let ε > 0, since E is separable there exist

a dense sequence (xn) and for all k > 0 we have

E =
⋃
n

BF

(
xn,

1

k

)
By increasing limit, for all k ≥ 1 there exist Nk such that we have

µ

(
Nk⋃
n=1

BF

(
xn,

1

k

))
≥ 1− ε

2k

Then let us define

K =
⋂
k

Nk⋃
n=1

BF

(
xn,

1

k

)
Let us show that it is a compact set. This is a closed set then it is complete. Note that
if a set is pre-compact and complete then it is compact. It is then sufficient to show that
for all δ > 0 there exist I with |I| <∞ and

K ⊂
⋃
i∈I

B(yi, δ)

which is obvious by construction of K. The tightness property is obvious.
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In general showing that an infinite family of measures is tight is a difficult task,
sometimes an art. The following Theorem shows the importance of tightness

Theorem 8 (Prokhorov). Let E be a Polish space and F ⊂M1(E).
The family F is tight if and only if F is relatively compact for the tight topology.

The proof is postponed at the end of the chapter.

Remark 3. The implication⇒ needs the Polish property whereas the implication⇐ does
not need this property.

Remark 4. As we shall see later the tight convergence is metrisable and we shall present
adequate metric. Then the compactness inM1(E) can be addressed by using the sequen-
tial aspect of compactness.

Proposition 9. Let {µn, n ∈ N∗} ⊂ M1(E). If {µn, n ∈ N∗} is a tight family and if there
exists a measure µ such that for all subsequence (µφ(n)) one can extract a subsequence
which converges weakly to µ then (µn) converges weakly to µ.

2.3 Properties and topology of M1(E)

Proposition 10. Let E be a metrisable space and µ ∈ M1(E) then µ is entirely deter-
mined by its values on open sets or in equivalent way on closed sets or equivalently on
Lipschitz function.

More precisely for all Borel set A

µ(A) = inf{µ(O), A ⊂ O open set}
= sup{µ(O), A ⊃ F closed set}

Moreover if E is Polish one can replace closed by compact set.

Démonstration. Let us denote A ⊂ B(E) the set of Borelian set such that

µ(A) =(1) inf{µ(O), A ⊂ O open set}
=(2) sup{µ(F ), A ⊃ F closed set}

First step : Let us show that A contains the open set. This is obvious for (1). Let A
be an open set let us show that µ(A) satisfies (2). For all k ∈ N∗, we denote

Fk =

{
x ∈ E|d(x,Ac) ≥ 1

k

}
,

where x 7→ d(x, Z) = infz∈Z d(x, z) is continuous. Then Fk is closed by continuity and
(Fk) is non decreasing sequence of sets. Since A is open, we have⋃

k≥1

Fk = A

and
µ(A) = limµ(Fk) ≤ sup{µ(F )|F ⊂ A, F closed}
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The other inequality is straightforward.
Second step : A is stable by complementary. This is straightforward by remarking

that 1− µ(Z) = µ(Zc) for all subsets Z and − inf{...} = sup{−...}.
Third step : Stability by countable union. Let (Ai)i∈N∗ ∈ AN. For all ε > 0 there

exist Oi open and Fi closed such that Fi ⊂ Ai ⊂ Oi

µ(Oi)−
ε

2i
≤ µ(Ai) ≤ µ(Fi)−

ε

2i

Then
⋃
Ai ⊂

⋃
Oi which is an open set and we have

µ(
⋃
i∈N∗

Oi)− µ(
⋃
i∈N∗

Ai) = µ(
⋃
i∈N∗

Oi \
⋃
i∈N∗

Ai)

≤ µ(
⋃
i∈N∗

Oi \ Ai)

≤
∑
i∈N∗

µ(Oi \ Ai)

≤
∑
i∈N∗

ε

2i
= ε

Then, at this stage, we have

µ(
⋃
i∈N∗

Oi)− ε ≤ µ(
⋃
i∈N∗

Ai)

For the other inequality, we cannot consider
⋃
i Fi since this set is not necessarily closed.

Nevertheless for all N ∈ N∗
N⋃
i=1

Fi ⊂
⋃
i

Ai

We shall use that

µ(
⋃
i

Fi) = lim
N
µ(

N⋃
i=1

Fi)

and if B ⊂ D ⊂ A then A \B = (A \D) ∪ (D \B)

µ(
⋃
i∈N∗

Ai \
N⋃
i=1

Fi) ≤ µ(
⋃
i∈N∗

Fi \
N⋃
i=1

Fi) + µ(
⋃
i∈N∗

Ai \
⋃
i∈N∗

Fi)

≤ ε+
∑
i

µ(Ai \ Fi)

≤ 2ε,

for N sufficiently large. Then
⋃
iAi ∈ A.

As a conclusion, we have proved that A is a σ-algebra that contains the open sets,
then A = B(E)

Concerning the Lipschitz functions. Let F be a closed set and consider

fK,F (x) = (1−Kd(x, F ))+

11



We have
1F (x) ≤ fK,F (x) ≤ 1

and
lim
K
fK,F (x) = 1F (x),

for all x ∈ E. The function fK,F is Lipschitz. By dominated convergence Theorem

µ(F ) = µ(1F ) = lim
K
µ(fK,F )

and the result holds.

When E is Polish, then µ is tight, then for all ε > 0, there exist Kε such that

µ(E \Kε) ≤ ε

Then if F is closed and F ⊂ A with µ(A) ≤ µ(F ) + ε, then F ′ = F ∩Kε is a compact
set such that F ′ ⊂ F ⊂ A and

µ(A) ≤ µ(F ′) + 2ε,

which yields the result.

The following Theorem gives a criterion for tight convergence.

Theorem 11 (Portmanteau). Let (µn, n ∈ N∗) a sequence of probability measures in
M1(E) and µ ∈M1(E) with (E, d) a metric space. The following assertions are equiva-
lent

1. In the tight convergence topology, i.e for all bounded and continuous functions we
have

µn(f)→ µ(f)

2. For all bounded and uniformly continuous functions f

µn(f)→ µ(f)

3. For all bounded and Lipschitz functions

µn(f)→ µ(f)

4. For all open set O ⊂ E
lim inf

n
µn(O) ≥ µ(O)

5. For all closed set F ⊂ E
lim sup

n
µn(F ) ≤ µ(F )

6. For all Borel set with µ(δA) = O

lim
n
µn(A) = µ(A)

12



Démonstration. 4)⇔ 5) It comes from the fact that the complement of a closed set is an
open set, and vice versa.

Montrons que 3)⇒ 4). Let O be an open set. Consider the Lipschitz bounded function

φk(x) = min(1, kd(x,Oc))

We have φk ≤ 1O and φk→k 1O. Then for all n

µn(O) ≥
∫
φkdµn

and then

lim inf
n

µn(O) ≥ lim inf
n

∫
φkdµn =

∫
φkdµ

Then using dominated convergence Theorem, taking k to infinity yields

lim inf
n

µn(O) ≥ lim inf
k

∫
φkdµn =

∫
1Odµ = µ(O)

Show that 4) and 5) implies 6). If µ(∂B) = 0, since ∂B = B̄ \ B̊ then

µ(B) = µ(B̊) = µ(B̄)

then

lim inf µn(B) ≥ lim inf µn(B̊) ≥ µ(B̊) = µ(B) (2.1)

lim supµn(B) ≤ lim supµn(B̄) ≤ µ(B̄) = µ(B) (2.2)

Then
lim inf µn(B) = lim supµn(B) = limµn(B) = µ(B)

Show finally that 6) ⇒ 1). Let φ ∈ Cb(Rd). Up to considering the negative and the
positive part we can suppose that φ ≥ 0. We then have∫

Rd
φdµn =

∫
Rd

(∫ ‖φ‖∞
0

1y≤φ(x)dy

)
dµn(x)

=

∫ ‖φ‖∞
0

µn({x : φ(x) ≥ y})dy (Fubini)

At this stage let us consider Fy = {x : φ(x) ≥ y} which contains the open set {x : φ(x) >
y}. We then have

∂Fy ⊂ Fy \ {x : φ(x) > y} = φ−1({y}).
Then µ(∂Fy) = 0 for almost all y. Indeed

{y : µ(∂Fy) > 0} ⊂ {y : µ(φ−1({y})) > 0}

which are the atom of the image measure of µ by φ. Then {y : µ(∂Fy) > 0} is at most
countable. For almost all y

µn(Fy)→ µ(Fy)

and by dominated convergence Theorem∫ ‖φ‖∞
0

µn({x : φ(x) ≥ y})dy →
∫ ‖φ‖∞

0

µ({x : φ(x) ≥ y})dy =

∫
Rd
φdµ

which yields the result.
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2.4 Some considerations on R and Rd

The case of R and Rd are rich enough and usual results are easy to show

Proposition 12. Let X and (Xn)n≥0 be real random variables. Then, Xn
L−→ X if and

only if for every t ∈ R where FX is continuous, we have

lim
n→∞

FXn(t) = FX(t).

Démonstration. The implication ⇒ is a consequence of the Portmanteau Theorem. For
the converse, we will prove point 2) of the Portmanteau Theorem. Let’s consider an open
interval O =]a, b[ (the general case follows from a countable union). Since the number of
discontinuity points of FX is countable, we can find a decreasing sequence (ak) converging
to a such that FX is continuous at ak for all k, and an increasing sequence (bk) converging
to b such that FX is continuous at bk. By right and left continuity, we have that :

lim supFXn(a) ≤ lim supFXn(ak) = FX(ak)→ FX(a)

lim inf FXn(b−) ≥ lim inf FXn(bk) = FX(bk)→ FX(b−)

Then

lim inf PXn(]a, b[) = lim inf FXn(b−)− FXn(a)

≥ FX(b−)− FX(a) = PX(]a, b[)

and we get the result.

The Prokhorov Theorem is also easy.

Theorem 13 (Prokhorov). Let (µn)n∈N be a tight sequence of probability measures on(
Rd,B(Rd)

)
. Then, it is possible to extract a subsequence that converges tightly to a pro-

bability measure.

Démonstration. According to the Banach-Alaoglu theorem, we can extract a subsequence
(µnk) that converges weak-∗ to a positive measure µ. For any function f ∈ C0(Rd), we
have : ∫

fdµnk →
∫
fdµ.

On a que µ(Rd) ≤ 1. To conclude, it suffices to show that µ(Rd) = 1. Let ε > 0 ; we can
then find a compact set K such that :

sup
nk

µnk(K) ≥ 1− ε.

We can find f ∈ C0(Rd) such that 1 ≥ f ≥ 1K . We then have

µ(Rd) ≥
∫
fdµ = lim

∫
fdµnk ≥ lim

∫
1Kdµnk ≥ 1− ε

Now, as we let ε tend towards 0, we have µ(Rd) ≥ 1, and the result is proven.
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Then we can now prove the Levy Theorem.

Theorem 14. (Lévy).

1. If Xn
L−→ X, then for all ξ ∈ Rd,

2. If there exists a function Φ : Rd → C continuous at 0, such that for all ξ ∈ Rd,

lim
n→∞

ΦXn(ξ) = Φ(ξ),

then there exists a probability measure µ on
(
Rd,B(Rd)

)
such that Φ = µ̂. Moreo-

ver, µn
tight−→µ and if X is a random variable with distribution µ, then Xn

L−→X.

Démonstration. Point 1) is evident by considering the real and imaginary parts of x 7→ eix.
For Point 2), it suffices to show that µn is tight. Indeed, the Prokhorov theorem

will then provide the existence of a convergent subsequence to a measure µ. Thus, Φ is
necessarily the characteristic function of µ. Thus, Φ must be the characteristic function
of µ. In this way, all the limit points will be equal to µ (as they will have the same
characteristic function).

To demonstrate tightness, we will show that PXn([−M,M ]) uniformly converges to 1
as M tends to infinity. On the set [−M,M ]c, the quantity

1− sin(X/M)

X/M

is bounded by a certain constant α independent of M . Therefore, we have

PXn([−M,M ]c) = E
(
1[−M,M ]c(Xn)

)
≤ 1

α
E

(
1− sin(Xn/M)

Xn/M

)
≤ 1

α
E

(
M

2

∫ 1/M

−1/M

(1− eiXnt)dt

)

≤ 1

α

M

2

∫ 1/M

−1/M

(1− ΦXn(t))dt

When n goes to infinity, by dominated convergence, we have

M

2

∫ 1/M

−1/M

(1− ΦXn(t))→ M

2

∫ 1/M

−1/M

(1− Φ(t))

Then

lim sup
n

PXn([−M,M ]c) ≤ 1

α

M

2

∫ 1/M

−1/M

(1− Φ(t))

Thus there exist N such that

sup
n≥N

PXn([−M,M ]c) ≤ 1

α

M

2

∫ 1/M

−1/M

(1− Φ(t))

Or

lim
M

M

2

∫ 1/M

−1/M

(1− Φ(t)) = 1− Φ(0) = 0

then PXn([−M,M ]c) converges uniformly to 0 and we get the result.
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Theorem 15. (Lévy)(Version faible). Xn
L−→ X ssi ∀ξ ∈ Rd, limn→∞ΦXn(ξ) =

ΦX(ξ).

2.5 Distance on M1(E)

We shall define two distances on M1(E) and then show that they give the tight
topology. We then consider a Polish space E equipped with a metric d.

Before defining the Levy Prokhorov distance let us define the ε neighborhood. For a
set A and ε we define

Aε = {x ∈ E s.t ∃y ∈ A s.t d(x, y) ≤ ε} =
⋃
y∈A

B(y, ε)

Proposition 16 (Levy Prokhorov Distance). Let (µ, ν) ∈M1(E)2 we define

ρ(µ, ν) := inf{ε > 0|∀B ∈ B(E), µ(B) ≤ ν(Bε) + ε} (2.3)

= inf{ε > 0|∀F closed µ(F ) ≤ ν(F ε) + ε}. (2.4)

which is a distance on M1(E) called Levy Prokhorov distance.

Démonstration. Let us start by proving that we can concentrate on closed set. It is
sufficient to show that

∀B ∈ B(E), µ(B) ≤ ν(Bε) + ε (2.5)

⇔ ∀F closed, µ(F ) ≤ ν(F ε) + ε (2.6)

The first implication is straightforward. For the reverse, let us remark that Bε = B̄ε.
Then we have

µ(B) ≤ µ(B̄ε) ≤ ν(B̄ε) + ε = ν(Bε) + ε

Now let us check that it is a distance.
First let us show that ρ(µ, µ) = 0. We have that for all ε > 0

∀B ∈ B(E), µ(B) ≤ µ(Bε) + ε

Then for all ε > 0, ρ(µ, µ) ≤ ε which yields ρ(µ, µ) = 0.
In order to show that ρ is symmetric. We just have to show that for all (µ, ν)

ρ(µ, ν) ≤ ρ(ν, µ)

To this end let us remark that

∀B ∈ B(E), ((Bε)c)ε ⊂ Bc

Then

ε < ρ(µ, ν)

⇒ ∃B, µ(B) > ν(Bε) + ε

⇒ ∃B, µ(Bc) + ε < ν((Bε)c)

⇒ ∃B, µ(((Bε)c)ε) + ε ≤ µ(Bc) + ε < ν((Bε)c)

⇒ ∃C = (Bε)c, ν(C) > ν(Cε) + ε

⇒ ε < ρ(ν, µ)

16



Then it is clear that ρ(µ, ν) ≤ ρ(ν, µ).
Let us show now that if ρ(µ, ν) = 0⇒ µ = ν. To this end, for all k ≥ 1 and all closed

set F , we have

µ(F ) ≤ ν(F 1/k) +
1

k

Then

ν(F ) = ν(
⋂
k

F 1/k)

= lim
k
ν(F 1/k)

≥ µ(F )

and then µ(F ) ≤ ν(F ) and by symmetry ν(F ) ≤ µ(F ) which yields µ = ν.
Now it remains to show the triangular inequality. Let (λ, µ, ν) ∈M1(E)3. Let ε, δ > 0

such that
ρ(λ, µ) < ε, ρ(µ, ν) < δ

We have for all B ∈ B(E)

λ(B) ≤ µ(Bε) + ε ≤ ν((Bε)δ) + ε+ δ

and therefore ρ(λ, ν) ≤ ε+ δ. Then we get the triangular inequality.

Proposition 17 (Kantorovich-Rubinstein). Let (E, d) be a metric space, define for a
function f

‖f‖BL = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
d(x, y)

The set BL = {f : E 7→ R|‖f‖BL <∞} corresponds to the bounded Lipschitz functions.
The quantity

β(µ, ν) = sup
‖f‖BL≤1

∣∣∣∣∫
E

fdµ−
∫
E

fdν

∣∣∣∣
for (µ, ν) ∈M1(E)2 defines a distance onM1(E) called Kantorovich-Rubinstein distance.

Démonstration. The only non-trivial fact is that β(µ, ν) = 0 implies that for all bounded
Lipschitz function, we have µ(f) = ν(f). Using the regularity of measure on (E, d), this
implies that µ = ν

Before expressing the main result, let us recall the Theorem of Ascoli-Arzela. To this
end let us recall the definition of the continuity modulus. For a function f : (E, d)→ R

ωδ(f) := sup
d(t,s)≤δ

|f(t)− f(s)|

Recall that f is uniformly continuous if and only if limδ→0 ωδ(f) = 0.

Theorem 18 (Arzela-Ascoli). Let (K, d) be a metric space and C(K) := {f : K 7→
R continuous}.

We have A ⊂ C(K) is relatively compact if and only if

17



1. For all t ∈ K
sup
f∈A
|f(t)| <∞

2. Equicontinuity
sup
f∈A

ωδ(f) →
δ→0

0

Remark 5. (1’) : If K ⊂ Rd we just need that ∃t0 ∈ K such that supf∈A |f(t0)| <∞

Démonstration. Let us show that (1) comes from (1′) and (2). Define tk = t0 + (t−t0)k
n

define ∆t = d(t,t0)
n

, we have for t ∈ K

|f(t)| ≤ |f(t0)|+
n∑
k=1

|f(tk)− f(tk−1)|

≤ |f(t0)|+ nω∆t(f)

≤ |f(t0)|+ nω diam(K)
n

(f)

Then

sup
f∈A
|f(t)| ≤ |f(t0)|+ n sup

f∈A
ω diam(K)

n

(f).

This quantity is bounded for n sufficiently large.
Let us show that the relative compactness implies (1) and (2). If A is relatively

compact then it is pre-compact. Therefore for all ε > 0 there exists n and f1, . . . , fn ∈ A
such that

A ⊂
n⋃
i=1

B(fi, ε).

In particular for all f ∈ A tehre exist j such that

‖f‖∞ ≤ ‖f − fi‖∞ + ‖fi‖∞

Then
sup
f∈A
‖f‖∞ ≤ ε+ sup

i=1,...,n
‖fi‖∞

Then A is uniformly bounded which yields (1).
Now for all f ∈ A and all (t, s) ∈ K2

|f(t)− f(s)| ≤ |fi(t)− fi(s)|+ |f(s)− fi(s)|+ |f(t)− fi(t)|

Then
ωδ(f) ≤ 2ε+ ωδ(fi)

Then
sup
f∈A

ωδ(f) ≤ 2ε+ sup
i=1,...,n

ωδ(fi)

Now the Heine Theorem implies that

lim
δ

sup
i=1,...,n

ωδ(fi) = 0

18



And this implies that
lim sup

δ
sup
f∈A

ωδ(f) ≤ 2ε

Now let us show that (1) + (2) implies that A is relatively compact. Let us use the
sequential characterization. Consider (fn) a sequence in A and let us show that there
exists a convergent subsequence. The equicontinuity implies that for all n ≥ 1 there
exists δn ≤ 1

n
such that

sup
f∈A

ωn(f) ≤ 1

n

Now since K is compact there exist a finite family tn,j such that

K ⊂
⋃
j

B(tn,j, 1/n).

Since A is uniformly bounded the set (fm(tn,j);m ≥ 1) is bounded Using Bolzano Weiers-
trass there exist φ1 such that

(fφ1(m)(t1,j),m ≥ 1)

is convergent. Then one can extract φ2 such that

(fφ2◦φ1(m)(tl,j),m ≥ 1)

is convergent for l = 1, 2 and with a diagonal argument, there exist φ such that

(fφ(m)(tl,j),m ≥ 1)

is convergent for l ≥ 1
Now let us define the dense subset

K ′ = {tn,j, n ≥ 1, j ∈ Jn} ⊂ K

For all t′ ∈ K ′ define
f(t′) = lim

n
fφ(n)(t

′)

Note that f is uniformly continuous on K ′ since for all |t− s| ≤ δ

|f(t)− f(s)| = lim |fφ(n)(t)− fφ(n)(s)| ≤ sup
g∈A

ωδ(g)

Then there exists a unique extension f wich is continuous on K, then uniformly conti-
nuous. Let t ∈ K. We have for t′ = tn,j such that

|t− t′| ≤ δn ≤
1

n

|f(t)− fφ(n)(t)| ≤ |f(t)− f(t′)|+ |f(t′)− fφ(n)(t
′)|+ |fφ(n)(t

′)− fφ(n)(t)| ≤ ωδn(f) +
2

n

and the convergence in norm holds.

Now, we are in the position to express the main Theorem relating tight convergence
and the measure β and ρ
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Theorem 19 (The distance β and ρ metrizes M1(E)). The following assertion are
equivalent

1. µn −→ µ tightly

2. β(µn, µ) −→ 0

3. ρ(µn, µ) −→ 0

Démonstration. Let us show that 1)⇒ 2). Since µ is tight, for all ε > 0, there exists Kε

such that µ(K) ≥ 1− ε. Be aware that at this stage, we cannot use Prokhorov. Then let
Kε the open ε-neighborhood et by Portmanteau

lim inf
n

µn(Kε) ≥ µ(Kε) ≥ 1− ε,

then for n sufficiently large µn(Kε) ≥ 1− 2ε.
Now let A = {f, ‖f‖BL ≤ 1} and let AK = {f|K , f ∈ A}. By Ascoli AK is relatively

compact. Then there exist k = kε and f1, . . . , fn such that

AK ⊂
k⋃
i=1

B(fi, ε)

which implies that for all f there exists fj such that

sup
t∈K
|f(t)− fj(t)| ≤ ε

Then for all f ∈ A there exist j such that

sup
t∈Kε

|f(t)− fj(t)| ≤ sup
s∈K
|f(s)− fj(s)|+ sup

t∈Kε

inf
s∈K
|f(t)− f(s)|

+ sup
t∈Kε

inf
s∈K
|fj(t)− fj(s)|

≤ 3ε

We have used the Lipschitziannity in the last two terms. Then for all f ∈ A, there exists
j such that

|µn(f)− µ(f)| ≤ |µn(f − fj)|+ |µ(f − fj)|+ |µn(fj)− µ(fj)|
≤ |µn((f − fj)1Kε)|+ ‖f − fj‖∞µn((Kε)c)

+|µ((f − fj)1K)|+ ‖f − fj‖∞µ((K)c)

+|µn(fj)− µ(fj)|
≤ |µn(fj)− µ(fj)|+ 10ε

Then

β(µn, µ) ≤ 10ε+ sup
1≤j≤k

|µn(fj)− µ(fj)|

This way, since |µn(fj)− µ(fj)| → 0 for all j = 1, . . . , k

lim sup
n

β(µn, µ) ≤ 10ε
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and then
lim
n
β(µn, µ) = 0.

Let us now show that (3) ⇒ (4). To do this, we will demonstrate that it is possible
to compare the distances ρ and β. Indeed we shall show that

ρ(µ, ν) ≤ 2
√
β(µ, ν)

Let B ∈ B(E) and µ, ν ∈ M∞(E), without loss of generality, we can assume that
µ(B) 6 ν(B). Let ε > 0, and consider the function g defined as

g(x) = max

(
0, 1− 1

ε
d(x,B)

)
for all x ∈ E.

Recall that g ∈ BL(E) with ‖g‖BL 6 1 + 1
ε

and 1B 6 g 6 1Bε. The first term 1
corresponds to the ‖.‖∞ and the term 1

ε
corresponds to the Lipschtiz constant. Therefore,

we have the following inequalities :

µ(B) 6 ν(B) 6
∫
E

gdν 6
∫
E

gdµ+

(
1 +

1

ε

)
β(µ, ν)

6 µ(Bε) +

(
1 +

1

ε

)
β(µ, ν)

6 µ(Bδ) + δ,

where δ = max
(
ε,
(
1 + 1

ε

)
β(µ, ν)

)
. Therefore, by the definition of ρ, we have :

ρ(µ, ν) 6 δ.

Two cases arise :
If β(µ, ν) < 1, and we choose ε such that β(µ, ν) < ε2 < 1, then we deduce that :(

1 +
1

ε

)
β(µ, ν) 6 ε+ ε2 < 2ε.

Hence, ρ(µ, ν) 6 2ε. By taking the limit as ε tends to β(µ, ν), we obtain the following
inequality :

ρ(µ, ν) 6 2
√
β(µ, ν).

Now, if β(µ, ν) > 1, we deduce that ρ(µ, ν) 6 2
√
β(µ, ν) since ρ(µ, ν) 6 1.

In all cases, we can conclude that (3)⇒ (4).

It remains to prove that 3) ⇒ 1). To this end by the Portmanteau Theorem it is
sufficient to prove that for all closed set F

lim supµn(F ) ≤ µ(F )

By hypothesis for all ε > 0 there exist n0 such that for all n ≥ n0 ρ(µn, µ) ≤ ε. Then for
all closed set F

µn(F ) ≤ µ(F ε) + ε

21



which yields
lim supµn(F ) ≤ µ(F ε) + ε

Taking ε→ 0 and (F ε) a decreasing sequence we get

lim supµn(F ) ≤ µ(F )

Then we can prove the Prokhorov Theorem

Theorem 20 (Prokhorov). Let E be a Polish space and F ⊂M1(E).
The family F is tight if and only if F is relatively compact for the tight topology.

Démonstration. Let us start by the sense ⇐ Note that up to replace F by F̄ , we can
suppose that F is compact. Note also that F̄ tight implies that F is tight. Let us start
with a Lemma

Lemma 21. Is F is compact and

E =
⋃
n

↑ On,

is a non decreasing union of open sets. Then for all ε there exists N such that for all
µ ∈ F

µ(ON) ≥ 1− ε

Démonstration. By contradiction there exist ε > 0 such that for all N ∈ N there exist
µN ∈ F with

µN(ON) < 1− ε

This gives us a sequence (µN). Since F is compact and sinceM1(E) is a metric space. By
the sequential characterization there exist an extraction φ such that, in the tight topology

µφ(N) → µ.

By the Portmanteau Theorem for all n

µ(On) ≤ lim inf
N

µφ(N)(On)

≤ lim inf
N

µφ(N)(Oφ(N)) On ⊂ Oφ(N) N >> 1

≤ 1− ε

Since (On) is increasing, we get that

µ(
⋃
n

On) ≤ 1− ε

which contradicts that E =
⋃
n ↑ On
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Let us come back to the proof that F compact ⇒ F tight. Let ε > 0 and {xn, n ≥ 1}
a dense sequence. For k ∈ N∗ being fixed

E =
⋃
n

B(xn,
1

k
)

From the Lemma there exist Nk(ε) such that fro all µ ∈ F

µ(

Nk(ε)⋃
n=1

B(xn, 1/k) > 1− ε

2k

The set

K
⋂
k≥1

Nk(ε)⋃
n=1

BF (xn, 1/k)

satisfies for all µ ∈ F

µ(Kc) = µ(
⋃
k

Nk(ε)⋃
n=1

BF (xn, 1/k)

c

)

≤ µ(
⋃
k

Nk(ε)⋃
n=1

B(xn, 1/k)

c

)

≤
∑
k

ε

2k
= ε

Furthermore note that K is pre-compact (can be covered by a finite number of ball of
radius 1/k for all k) and it is clear that K̄ = K then K is complete since E is complete.
It follows that K is compact and then F is tight.

For the sense ⇒ let us atrt with the case where E is compact. We shall need this
proposition.

Proposition 22. If (K, d) is a metric compact set. Then from any sequence (µn) in
M1(K) one can extract a convergent subsequence.

Démonstration. Somehow it is an abstract version of the real case K = [a, b]. Here we
consider K equipped with d, C(K) equipped with ‖.‖∞ and {xn, n ≥ 1} a dense sequence
in K. We consider as well A = Q[fk, k ≥ 1] where fk(.) = d(., xk) as the algebra genrated
by (fk).

Star by showing that A is dense. To thsi end we shall show the following abstract
version of Stone-Weierstrass. A is a sub-algebra that separates the points i.e ∀(x, y) ∈
K ×Kx 6= y ⇒ ∃f ∈ Af(x) 6= f(y) ⇔ A is dense in C(K). Let (x, y) ∈ K ×K, we have

∀f ∈ Af(x) = f(y)

⇒ ∀k ≥ 1, fk(x) = fk(y)

⇔ ∀k ≥ 1d(x, xk) = d(y, xk)

⇒ forxk → y0 = d(y, y) = lim d(y, xk) = lim d(x, xk) = d(x, y)

⇒ x = y
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Note that A is countable. Let us proceed by making a diagonal extraction. For all
f ∈ A we have

|µn(f)| ≤ ‖f‖∞ <∞

For all f one can extract, then by countability we can make a diagonal extarction φ such
that

µ(φ(n))(f)→M(f)

Clearly M : A 7→ R is linear. For all f ∈ A

|M(f)| ≤ ‖f‖∞

Then M is a linear form on A which is uniformly continuous then there exists a unique
linear continuous extension on C(K).

let us show that for all g ∈ C(K)

M(g) = limµφ(n)(g)

Indeed let (gk) ∈ A such that gk → g in ‖.‖∞. We have

|µφ(n)(gk)− µφ(n)(g)| ≤ ‖gk − g‖ → 0

Let u be any adherence value of (µφ(n)(g)), we then have

|M(gk)− u| ≤ ‖gk − g‖ → 0

and then there exist a unique adherence value

u = lim
k
M(gk) = M(g)

Note that if we knew that
M(g) = µ(g)

for µ ∈M1(E), we would have finished. To conclude we can check that

M(1) = 1, f ≥ 0⇒M(f) ≥ 0

Come back to the general case. Since (µn) is tight, there exist an increasing sequence
of compact sets (Kj)j>1 (i.e. Kj ⊂ Kj+1 for all j > 1 ) such that

∀n ∈ N, µn (Kj) > 1− 1

j
pour tout n ∈ N

Indeed, for that it is sufficient to choose a family of compact sets (Lj)j∈N such that

µn (Lj) > 1 − 1
j

by tightness and then Kj = ∪i6jLi ; the family of compact set (Kj)j∈N
satisfied what we wanted.

Next, for all j > 1 and n ∈ N, denote by νjn = µn|Kj the restriction of µn to Kj.

νjn =
1kµn
µn(Kj
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By the last proposition for all j (νjn) converges up to an extraction. By diagonally extrac-
ting

νjφ(n) →n→+∞
νj for all j > 1

Up to extracting again we have

µφ(n)(Kj)→ µj ≥ 1− 1

2j

µj+1ν
j+1(B2ε ∩Kj+1) ≥ µj+1ν

j+1(B̄ε ∩Kj+1)

≥ lim sup
n

µφ(n)(Kj+1)νj+1
φ(n)(B̄

ε ∩Kj+1)

= lim sup
n

µφ(n)(B̄
ε ∩Kj+1)

≥ lim sup
n

µφ(n)(B̄
ε ∩Kj)

= µj lim sup
n

νj(B̄ε ∩Kj)

≥ µj lim inf
n

νj(Bε ∩Kj)

≥ µjν
j(Bε ∩Kj)

Taking ε→ 0 yields
µj+1ν

j+1(B̄ ∩Kj+1) ≥ µjν
j(B̄ ∩Kj)

This yields that fro all closed set F

µj+1ν
j+1(F ∩Kj+1) ≥ µjν

j(F ∩Kj)

By the regularity of the measures for all the Borel sets B

µj+1ν
j+1(B ∩Kj+1) ≥ µjν

j(B ∩Kj)

Therefore by using this increasing fact one can define µ such that

µ(B) = lim
j
µjν

j(B ∩Kj) = lim
j
µjν

j(B ∩Kj),

since 1− 1
2j
≤ µj ≤ 1

The application µ ∈M1(E). Indeed

µ(E) = lim
j
µjν

j(Kj) = 1

Let (Bi) disjoint

µ(
⊔
i

Bi) = lim
j
µjν

j((
⊔
i

Bi) ∩Kj)

= lim
j

∑
i

µj(ν
j((Bi) ∩Kj)

=
∑
i

lim
j
µj(ν

j((Bi) ∩Kj) monotone convergence
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In ordee to conclude, so we must demonstrate that it is possible to extract a sub-
sequence of (µn)n∈N such that this subsequence converges tightly towardsc µ. In other
words, for all f ∈ Cb(E) we shall show

lim
n→+∞

∫
E

fdµn =

∫
E

fdµ.

Without loss of generality we can suppose that 0 6 f 6 1. For all n ∈ N and for all
j > 1, we get

∣∣∣∣∫
E

fdµn −
∫
E

fdµ

∣∣∣∣ 6
∣∣∣∣∣
∫
E

fdµn −
∫
Kj

fdνj

∣∣∣∣∣+

∣∣∣∣∣
∫
Kj

fdνj −
∫
E

fdµ

∣∣∣∣∣
6

∣∣∣∣∣
∫
Kj

fdµn −
∫
Kj

fdνj

∣∣∣∣∣+ µn
(
Kc
j

)
+

∣∣∣∣∣
∫
Kj

fdνj −
∫
E

fdµ

∣∣∣∣∣
6

∣∣∣∣∣
∫
Kj

fdνjn −
∫
Kj

fdνj

∣∣∣∣∣+
1

j
+

∣∣∣∣∣
∫
Kj

fdνj −
∫
E

fdµ

∣∣∣∣∣ .
Since µn|Kj = νjn and µn

(
Kc
j

)
6 1

j
by tightness. Next, since (νjn)n∈N converges tightly

to νj, we deduce that

lim sup
n→+∞

∣∣∣∣∫
E

fdµn −
∫
E

fdµ

∣∣∣∣ 6 1

j
+

∣∣∣∣∣
∫
Kj

fdνj −
∫
E

fdµ

∣∣∣∣∣
6

1

j
+
∣∣νj (Kj)− µ(E)

∣∣ .
Now j to infinity allows to conclude. Next by definition og µ (with B = E ) we get∫

Kj

fdνj ↑
j→+∞

∫
E

fdµ.

Then limn→+∞
∫
E
fdµn =

∫
E
fdµ which finishes the proof.

Let us express a corollary

Corollary 23. The metric space (M1(E), β) is complete.

This is also true for β replace by ρ.

Démonstration. .Let (µn)n∈N be a Cauchy sequence of (E, β) then it is pre-compact. By
Prokhorov there exist a convergent subsequence. Since a Cauchy sequence has at most
one limit point, we can deduce that it converges, and therefore, the space is complete
(with respect to the metric induced by ρ or β)
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Chapitre 3

Functional Limit theorems

3.1 Goal

Proposition 24. If E is a Polish space then

C = C([0, T ], E)

is a Polish space.

Démonstration. The metrisability and the completness are usual.

Then it is reasonable to consider constructing probability measure in M1(C)

Theorem 25 (Existence and uniqueness of Brownian motion). Let E = R (or E = Rd).
There exist a unique measure W ∈M1(C)) such that if X is r.v valued in E with L(X) =
W, we have

— X0 = 0
— t 7→ Xt is almost surely continuous, i.e X ∈ C
— ∀0 = t0 < t1 < . . . , tk, k ∈ N (Xti−Xti−1

, i = 1, . . . , k) are independent increments
such that fro all i = 1, . . . , k

Xti −Xti−1
∼ N (0, ti − ti−1), (N (0, (ti − ti−1)Id, E = Rd)

We call W the Wiener measure. All r.v X such that L(X) = W is called a standard
Brownian motion.

The Brownian motion is a essential ingredient in modern probability that allows to
construct other interesting processes. This is also a universal process that appears natu-
rally as the limit process of the central limit Theorem.

Come back to the warmup. Let (ξi) be a sequence of i.i.d r.v such that

Eξ1 = 0, Eξ2
1 = 1

Denote

Sn =
n∑
i=1

ξi
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and

S
[n]
t =

Sbtnc√
n

+ (nt− bntc)
Sbtnc+1 − Sbtnc√

n

We have the following theorem

Theorem 26 (Donsker Invariant Principle). We have the following convergence in dis-
tribution

(S
[n]
t ; 0 ≤ t ≤ T )

L→
n→∞

(Xt, 0 ≤ t ≤ T ),

where X is a Brownian motion.
In an equivalent way, in the tight topology

L(S[n]) →
n→∞

W.

This convergence can be also established in the space D where D holds for discon-
tinuous function ; more precisely càdlàg (right continuous and left limit). This won’t be
addressed in these notes.

We shall show the result by assuming Eξ2+ε
1 <∞.

Before establishing this theorem we shall present the usual procedure to show conver-
gence in distribution. Essentially there are two steps : tightness and identification of the
limit process. For the identification, usually we study the marginals.

3.2 Marginals and Product σ-algebra

On C there is a natural application called projections. For all 0 ≤ t ≤ T define

πt : C → E
f 7→ f(t)

Definition 7. Let X be a continuous process. Let 0 =≤ t1 < . . . , tk ≤ T, k ∈ N, then

L(Xt1 , . . . , Xtk)

is called the k-dimensional marginal or the finite dimensional marginals.
In other words if L(X) = µ ∈M1(C) then

L(Xt1 , . . . , Xtk) = (πt1 , . . . , πtk)#µ,

where the last symbol means mesure image.

Recall that C is endowed with its Borel σ-algebra generated bu the open sets for the
uniform topology. Another σ-algebra is also natural

Definition 8 (Cylindric σ-algebra). The cylindric σ-algebra Cyl(C) is defined by

Cyl(C) = σ(πt, 0 ≤ t ≤ T ),

this is the σ-algebra generated by the projection applications.

We have the following theorem
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Theorem 27. The Borel and the cylindric σ algebras are the same

Cyl(C) = B(C)

Démonstration. The inclusion ⊂ is obvious since the application πt are continuous, then
for all 0 ≤ t ≤ T π−1

t (O) ∈ B(C) for all open sets and therefore

Cyl(C) = σ(π−1
t (O), O open) ⊂ B(C)

For the inclusion ⊃, let us show that all open ball B(f ; r) ∈ B(C) satisfies B(f ; r) ∈
Cyl(C).

Let f ∈ C, r > 0

B(f ; r) = {g ∈ C| |g − f |∞ 6 r}
= {g ∈ C | ∀t ∈ [0, T ], d(f(t); g(t)) 6 r}
= {g ∈ C | ∀t ∈ Q ∩ [0, T ], d(f(t), g(t)) ≤ r} continuity

=
⋂

t∈Q∩[0,T ]

{g ∈ C | g(t) ∈ B(f(t); r)}

⋂
t∈Q∩[0,T ]

{g ∈ C | πt(g) ∈ B(f(t); r)}

=
⋂

t∈Q∩[0,T ]

π−1
t (B(f(t); r)︸ ︷︷ ︸)

Since B(f(t); r) ∈ B(E) then π−1
t (B(f(t); r)) ∈ Cyl(C) and then B(f ; r) ∈ Cyl(C). As a

consequence

B(f ; r) =
⋃
r′<r
r′∈R

B(f ; r) ∈ Cyl(C)

Finally all open set in a Polish space E is a countable union of open ball

U =
∞⋃
k=1

B (xk; εk) ,

where (xk) is a dense sequence and B (xk; εk) ⊂ U for all k.
Then Cyl(C) contains the open set. As a consequence

Cyl(C) ⊃ B(E)

Corollary 28. — All law µ ∈M1(C) is uniquely determined by its marginals.
— µn →

n→+∞
µ ∈M1(C) tightly if and only if


a) (µn;n ≥ 1) is tight

b) CV of finite dimensional marginals towards the one of µ (for all subsequences )

i.e (πt1 , . . . , πtk) #µϕ(n)
n→+∞−→ (πt1 , . . . , πtk) #µ ∀0 6 t1 < · · · < tk
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- In more probabilistic words. Let X, Y two processes on C then X
L
= Y if and only if

∀k > 1 ∀0 < t1 < t2 < . . . < tk

(Xt1 , Xt2 , . . . , Xtk)
L
= (Yt1 , . . . , Ytk)

- Let (Xn) be a sequence of processes in C then

Xn
L−→ X

if and only if {
(Xn;n > 1) is a tight family
CV of marginales for all subsequences

The convergence of marginales means that for all extraction φ, if (Xφ(n)) converges in
distribution then ∀k > 1,∀0 6 t1 < t2 < · · · < tk,(

Xφ(n) (t1) , . . . , Xφ(n) (tk)
) L−→
n→+∞

(Xt1 , . . . , Xtn)

Démonstration. For the first point let us show that if µ and µ′ have the same marginals
then µ = µ′. To this end let us consider B1, . . . , Bk k Borel sets and let 0 ≤ t1 < . . . < tk
and define

A = {f ∈ C|f(ti) ∈ Bi, i = 1, . . . , k} =
⋂
i

π−1
ti

(Bi)

Then we have

µ(A) = (πt1 , . . . , πtk)#µ(B1 × . . .×Bk)

= (πt1 , . . . , πtk)#µ
′(B1 × . . .×Bk)

= µ′(A)

Then the set
T = {A ∈ B(C)|µ(A) = µ′(A)}

contains the sets that generates Cyl(C) which is stable by intersection, then it is a class
monotone. Then T ⊃ Cyl(C) and the first point follows.

For the second point. Since M1(C) is metrisable we get that

µn −→tight µ

if and only if {µn, n ≥ 1}∪ {µ} is compact inM1(C} and the unique limit point is µ. By
Prokhorov this holds if and only if {µn, n ≥ 1} is tight and for all extraction φ

µφ(n) → ν

implies µ = ν (unique limit point). By the first point this holds if and only if {µn, n ≥ 1}
is tight and for all extraction φ

(πt1 , . . . , πtk) #µϕ(n)
n→+∞−→ (πt1 , . . . , πtk) #µ
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Remark 6. Note that
Xn

L→X

implies that for all 0 ≤ t1 < . . . < tk we have

(Xn(t1), . . . , Xn(tk))
L−→

n→+∞
(Xt1 , . . . , Xtn)

3.3 Kolmogorov criterion

Theorem 29 (Kolmogorov Criterion). Let E = Rd. For α > 0 and for f : [0, T ] → E,
we define

Nα(f) = sup
s 6=t

|f(t)− f(s)|
|t− s|α

,

the α Hölder norm.
Let (Xn) a sequence of r.v in C, satisfying
— (Xn(0), n ≥ 1) is tight
— ∃p, c, β > 0,E[|Xn(t)−Xn(s)|p] ≤ c|t− s|1+β

Then (Xn, n ≥ 1) is tight and more precisely, for all 0 < α < β/p (Nα(Xn), n ≥ 1) is
tight.

Démonstration. Let us prove the result for d = 1 and let us suppose that T = 1. let us
start by showing that{

(Xn(0), n ≥ 1) tight
(Nα(Xn), n ≥ 1) tight

⇒ (Xn, n ≥ 1) tight

Recall that we have to show that for all ε > 0, there exists a compact K ⊂ C such that

sup
n

P(Xn ∈ Kc) ≤ ε

By Arzela-Ascoli a compacts et is characterized by
— The boundeness in 0, i.e ∃M > 0,∀f ∈ K, |f(0)| ≤M
— The equi-continuity

sup
f∈K

ωδ(f) →
δ→0

0

Note that for all α > 0 if there exists M ′ > 0 and K ⊂ {f ∈ C|Nα(f) ≤ M ′} then K is
equicontinuous. Therefore let us consider

K = {f ∈ C| |f(0)| ≤M,Nα(f) ≤M ′}.

Let us show that {
(Xn(0), n ≥ 1) tight

(Nα(Xn), n ≥ 1) tight
⇒ (Xn, n ≥ 1) tight.

We have to show that for all ε > 0,∃K compact

sup
n≥1

P(Xn ∈ Kc) ≤ ε
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which is implied by the fact that for all ε > 0,∃M,M ′ > 0

sup
n≥1

P(|Xn(0)| ≥M,Nα(Xn) ≥M ′) ≤ ε,

which is implied by the tightness of (Xn(0), n ≥ 1) and (Nα(Xn), n ≥ 1).
Let us start by showing that for all 0 < α < β/p (Nα(Xn), n ≥ 1) is tight. This needs

a preliminary analysis. Let define for all m ∈ N∗

Dm := the dyadic numbers of order m

= { k
2m
, 0 ≤ k < 2m}

Note that card(Dm) = 2m. Define

Km(X) := sup
t∈Dm

|Xt+2−m −Xt|.

Let us show that

E[|Xt −Xs|p] ≤ c|t− s|1+β ⇒ EKm(X)p ≤ c2−mβ

Indeed

EKm(X)p = E sup
t∈Dm

|Xt+2−m −Xt|p

≤
∑
t∈Dm

E|Xt+2−m −Xt|p

≤ cCard(Dm)(2−m)1+β

= c2−mβ

Now let us show that for all X ∈ C

Nα(X) ≤ 2
∑
m≥0

Km(X)2αm.

By continuity

Nα(X) = sup
s 6=t,(s,t)∈(

⋃
mDm)

2

|Xt −Xs|
|t− s|α

If s < t with s, t ∈
⋃
mDm, there exists m > 0 such that

2−(m+1) ≤ t− s ≤ 2−m

This way one can write

[s, t[=
N−1⊔
i=0

[τi, τi+1[

with s = τ0 < τ1 < . . . < τN = t with τi ∈ Dk, k ≥ m. All the pairs (τi, τi+1) belongs
to the same Dk0 and τi+1 − τi = 2−k0 . This decomposition can be done in such way that
|τi+1 − τi| = |τj+1 − τj| for at most 2 indices.
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Then we have

|Xt −Xs| ≤
N−1∑
i=0

|Xτi+1
−Xτi |

≤ 2
∑

k≥m+1

Kk(X)

Then

|Xt −Xs|
|t− s|α

≤ 2
∑

k≥m+1

Kk(X)2(m+1)α

≤ 2
∑

k≥m+1

Kk(X)2kα

≤ 2
∑
k≥0

Kk(X)2kα

The last term is independent of (t, s) therefore

Nα(X) ≤ 2
∑
k≥0

Kk(X)2kα

Now we should show that (
2
∑
k≥0

Kk(Xn)2kα, n ≥ 1

)
is tight. Using Markov inequality we have

P

(
2
∑
k≥0

Kk(Xn)2kα ≥M

)
≤

E
[∣∣2∑k≥0Kk(Xn)2kα

∣∣p]
Mp

Let us show that E
[∣∣∑

k≥0Kk(Xn)2kα
∣∣p] is uniformly bounded in n.

To this end we have(
E

[∣∣∣∣∣∑
k≥0

Kk(Xn)2kα

∣∣∣∣∣
p])1/p

≤
∑
k≥0

2αk (E(Km(Xn))p)1/p

≤
∑
k≥0

2αk
(
Ec2−kβ

)1/p

≤ c1/p
∑
k≥0

2k(α−
β
p )

which is finite and idependent of n for all 0 < α < β
p
.

This way there exists C such that

sup
n

P

(
2
∑
k≥0

Kk(Xn)2kα ≥M

)
≤ C

Mp

and the tightness follows.
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3.4 Proof of the announced results

3.4.1 Existence and uniqueness of the Brownian motion

Let us quickly present construction of Brownian motion. To do so, consider the Hilbert
space L2([0, 1], dλ) where λ denotes the Lebesgue measure, and let (ei)i∈N be an ortho-
normal basis of H. For example, one can choose the basis defined using Haar wavelets.
These are obtained by translation and dilation of the following function

H(t) =


1 si 0 6 t < 1

2

−1 si 1
2
6 t 6 1

0 sinon

Let us then note that for every integer n ∈ N, there exists a unique pair (j, k) ∈ N2

such that

n = 2j + k with 0 6 k < 2j.

For such integers, we then define, for all t ∈ [0, 1],

en(t) = 2j/2H
(
2jt− k

)
for n = 2j + k with j > 0 and 0 6 k < 2j,

and impose e0(t) = 1. The family thus defined (en)n>0 is an orthonormal basis of
L2[0, 1].

From such a family, it is possible to construct a Schauder basis (vn)n of C[0, 1] (i.e.,
a dense family in a Banach space). To do this, we define

vn(t) =

∫ t

0

en(u) du for all t ∈ [0, 1].

Moreover, if d : [0, 1]→ R is defined by

d(t) =


2t if 0 6 t < 1

2

2(1− t) if 1
2
6 t 6 1

0 otherwise

and dn(t) = d (2jt− k) for n = 2j + k with 0 6 k < 2j. It is then possible to show
that

vn(t) = λndn(t)

with λ0 = 1 and, for n > 1, λn = 1
2
2−j/2 where n = 2j + k with 0 6 k < 2j and j > 0.

From this family, it is possible to construct Brownian motion. Indeed, let (gi)i∈N be a
sequence of standard Gaussian random variables, independent and identically distributed
(i.e., g1 ∼ N (0, 1)) on a probability space (Ω,A,P) and let us define

Xn
t =

n∑
i=1

givi(t) with t ∈ [0, 1].

This sequence of random functions satisfies the following convergence :
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Theorem 30. Almost surely, (Xn)n∈N converges uniformly on [0, 1] to a limit X which
is a Brownian motion.

DÃ c©monstration. First, (assuming the limit exists), let us see what happens at the
level of the covariance functions and quickly verify that

lim
n→+∞

E [Xn
sX

n
t ] = E [XsXt] = min(s, t).

To do this, we will use the fact that the variables (gi)i∈N are independent and identi-
cally distributed standard Gaussian random variables.

E [Xn
sX

n
t ] = E

[(
n∑
i=1

givi(s)

)(
n∑
j=1

gjvj(t)

)]

=
n∑
i=1

vi(s)vi(t)

=
n∑
i=1

(∫ s

0

ei(u) du

)(∫ t

0

ei(u) du

)
=

n∑
i=1

〈
ei, 1[0,s]

〉
L2(dP)

〈
ei, 1[0,t]

〉
L2(dP)

.

To conclude, it suffices to use Parseval’s theorem (see [204]), which assures us that

lim
n→+∞

n∑
i=1

〈
ei, 1[0,s]

〉
L2

〈
ei, 1[0,t]

〉
L2 =

〈
1[0,s], 1[0,t]

〉
L2 = min(s, t).

This construction will be employed again when we prove the Schilder theorem in
Chapter 4.

Let us now demonstrate the uniform convergence. For this, we will need the following
lemma.

Lemma 31. In the framework described in Section 2.6, there exists a random variable C
such that, almost surely, for all n > 2, we have

|gn| 6 C
√

log n et P(C <∞) = 1.

DÃ c©monstration. For x > 1, we have

P (|gn| > x) =
2√
2π

∫ ∞
x

e−u
2/2du

6

√
2

π

∫ ∞
x

ue−u
2/2du = e−x

2/2

√
2

π
.

Thus, for all α > 1, we obtain

P
(
|gn| >

√
2α log n

)
6 exp(−α log n)

√
2

π
= n−α

√
2

π
.
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Moreover, since α > 1, this last quantity is summable, and the Borel-Cantelli lemma
1.1.1 then implies that

P
(
|gn| >

√
2α log n infinitely often

)
= 0.

Consequently, the random variable C = sup26n6∞
|gn|√
logn

is finite almost surely. Armed

with this lemma, we can establish the uniform convergence of Xn(t) to Xt. To do this,
we will show that, almost surely, the remainder of the series (in absolute value) converges
uniformly to 0.

First, observe that for all n ∈ [2j, 2j+1[ we have :
- log n < j + 1
- for all t ∈ [0, 1], dn(t) 6= 0 for at most one integer n ∈ [2j, 2j+1[ (this localization of

the support fully justifies the use of the functions dn).
This is why, using the previous lemma, we have, for all M > 2J with J > 1,

∞∑
n=M

|gn| vn(t) =
∞∑

n=M

|gn|λndn(t) 6 C

∞∑
n=M

λn
√

log ndn(t)

6 C
∞∑
j=J

2j−1∑
k=0

1

2
2−j/2

√
j + 1d2j+l(t)

= C
∞∑
j=J

1

2
2−j/2

√
j + 1

Since 0 6 dn(t) 6 1 for all n ∈ N and for all t ∈ [0, 1], the last term above tends to
zero as J → +∞. This implies that (almost surely) Xn

t converges uniformly ; furthermore,
the limiting process (Xt)t∈[0,1] is continuous (almost surely) since the functions t 7→ Xn

t

are continuous for all n ∈ N.
The proof is not completely finished. It remains to show that it is a Gaussian process.

Note that the form of the covariance function easily allows us to show that the increments
of the process are independent. Using this observation, for any 0 6 t1 < t2 < . . . < td 6 1,
it is not difficult to show (by considering the characteristic function) that the vector

(Xt1 , . . . , Xtd)

is a Gaussian vector. These details are left to the reader’s attention and can be found,
for example.

3.4.2 proof of Donsker

To prove the Theorem we shall show the convergence of finite dimensional law and
the tightness.

Finite dimensional Laws
Pour identifier la limite Ã c©ventuelle, nous allons utiliser les lois (en dimension finie)

induites par
Proposition 2.5.2. Soient 0 6 t1 < t2 < . . . < td 6 1 alors
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(
Xn
t1
, Xn

t2
, . . . , Xn

td

) L→ G dans Rd lorsque n→∞

ou G est un vecteur gaussien centrÃ c© de matrice covariance Γ = (Γij)16i,j6d avec
Γij = min (ti, tj) pour tout 1 6 i, j 6 d.

DÃ c©monstration. Pour simplifier, nous ferons la dÃ c©monstration lorsque d = 2. Le
cas gÃ c©nÃ c©ral est similaire mais les notations alourdissent inutilement la preuve.

Tout d’abord, observons que pour tout t ∈ [0, 1]∣∣∣∣Xn
t −

1√
n
Sbntc

∣∣∣∣ 6 1√
n

∣∣Vbntc+1

∣∣ .
Moreover, pour tout ε > 0, puisque les variables ont mÃame loi,

P
(

1√
n

∣∣Vbntc+1

∣∣ > ε

)
= P

(
|V1| >

√
nε
)

D’ou, d’aprÃ¨s l’inÃ c©galitÃ c© de Tchebychev, 1√
n
Vbntc+1

P→ 0 lorsque n → +∞.

C’est donc Ã c©galement le cas de Xn
t − 1√

n
Sbntc.

En consÃ c©quence, la norme euclidienne
∥∥∥(Xn

t1
, Xn

t2

)
−
(

1√
n
Sbnt1c,

1√
n
Sbnt2c

)∥∥∥
2

tend

vers 0 en probabilitÃ c©.
Pour poursuivre notre Ã c©tude, nous utiliserons le lemme ci-dessous.
Lemme 2.5.1. Soient Yn, Xn et X des variables alÃ c©atoires rÃ c©elles. Supposons que

Yn
L→ X et |Xn − Yn|

P→ 0 lorsque n→ +∞. Alors Xn
L→ X lorsque n→ +∞.

Au vu de ce qui prÃ c©cÃ¨de, le prÃ c©cÃ c©dent lemme nous assure que nous pouvons
travailler avec 1√

n
Sbntc plutÃ´t que Xn

t .

Puisque nous sommes en dimension finie, nous pouvons utiliser la transformÃ c©e de
Fourier pour Ã c©tablir un rÃ c©sultat de convergence en loi. Ici, pour (u1, u2) ∈ R2, nous
avons

E
[
e
iu1

1√
n
Sbnt1c+iu2

1√
n
Sbnt2c

]
= E

[
e
i(u1+u2) 1√

n
Sbnt1c+iu2

1√
n(Sbnt2c−Sbnt1c)

]
= E

[
e
i(u1+u2)

√
t1√
nt1

Sbnt1c

]]
E
[
e
iu2

1√
n(Sbnt2c−Sbnt1c)

]
puisque Sbnt1c et

(
Sbnt2c − Sbnt1c

)
sont des variables alÃ c©atoires indÃ c©pendantes

(car t1 < t2 ). Nous pouvons alors utiliser le thÃ c©orÃ¨me 1.5.2 de la limite centrale
dans R2 qui nous assure que

lim
n→+∞

E

[
e
i(u1+u2)

√
t1√
nt1

Sbnt1c

]
E
[
e
iu2

1√
n(Sbnt2c−Sbnt1c)

]
= e−(u1+u2)2

11
2 × e−u22

t2−t1
2

En d’autres termes, (
Xn
t1
, Xn

t2

) L→ G lorsque n→ +∞
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ou G est un vecteur gaussien centrÃ c© de matrice covariance Γ =

(
t1 t1
t1 t2

)
.

Remarque. L’Ã c©tape prÃ c©cÃ c©dente nous montre la forme de la structure de co-
variance d’un Ã c©ventuel processus limite X :

E [XsXt] = min(s, t) pour tout s, t ∈ [0, 1]

Tightness
In order to show the tightness, we shall use the Kolmogorov criterion. We apply this

Theorem for Xn = S[n] and p = 4. Note that p = 2 will imply that β = 0 and then it is
not sufficient.

Let us compute

E
[∣∣∣S[n]

t − S[n]
s

∣∣∣4]
We shall consider two cases

— ∃k ∈ N, sn ≤ k < tn
— ∃k ∈ N, k ≤ sn < tn ≤ k + 1

The second case is easy. For the first∣∣∣S[n]
t − S[n]

s

∣∣∣ ≤ Sbtnc − Sdsne√
n

+
|tn− btnc|√

n
|ξbtnc+1|+

|dsne − sn|√
n

|ξdsne|

At this stage, we have

E

 btnc∑
dsne+1

ξk

4

= E|ξ1|4(btnc − dsne) + (E|ξ1|2)2 (btnc − dsne)(btnc − dsne − 1)

2

Now let us observe that for all p ≥ 1, for all k ≥ 1 for all ai > 0

k∑
i=1

api ≤

(
k∑
i=1

ai

)p

≤ p
k∑
i=1

api

We have now

E
[∣∣∣S[n]

t − S[n]
s

∣∣∣4]
≤ 4

n2

[
E|Sbtnc − Sdsne|4 + |tn− btnc|4Eξ4

1 + |sn− dtne|4Eξ4
1

]
≤ Cξ

n2

[
1

2
(btnc − dsne) +

(btnc − dsne)(btnc − dsne)
2

+ |tn− btnc|4 + |dsne − sn|4
]

≤ Cξ
n2

[
(btnc − dsne)2 + |tn− btnc|2 + |dsne − sn|2

]
≤ Cξ

n2
(btnc − dsne+ tn− btnc+ dsne − sn)2

≤ Cξ
n2

(tn− sn)2 = Cξ(t− s)2

and the Kolmogorov criterion is satisfied with p = 4, β = 1 and c = Cξ.
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Chapitre 4

Optimal transport
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