Papers in International Journals
13 – J.-P. Raymond, A new definition of nonconservative products and weak stability results, Boll. Un. Mat. Ital. B (7), 10 (1996), 681-699.
12 – D. Seghir, J.-P. Raymond, Lower semicontinuity and integral representation of functionals in BV([a,b];R^m). J. Math. Anal. Appl. 188 (3) (1994), pp. 956-984.
11 – J.-P. Raymond, Existence and uniqueness results for minimization problems with nonconvex functionals, J. Optim. Theory Appl., 82 (1994), pp. 571-592.
10 – J.-P. Raymond, An anti-plane shear problem, J. Elasticity, 33 (1993), pp. 213-231.
9 – J.-P. Raymond, Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems, Appl. Math. Optim., 26 (1992), pp. 39-62.
8 – J.-P. Raymond, Existence of minimizers for vector problems without quasiconvexity condition, Nonlinear Anal., 18 (1992), pp. 815-828.
7 – J.-P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), pp. 59-73.
6 – J.-P. Raymond, Existence theorems in optimal control problems without convexity assumptions, J. Optim. Theory Appl., 67 (1990), pp. 109-132.
5 – J.-P. Raymond, Regularité globale des solutions de systèmes elliptiques non linéaires, Rev. Mat. Univ. Complut. Madrid, 2 (1989), pp. 241-270.
4 – J.-P. Raymond, Théorèmes de régularité locale pour des systèmes elliptiques dégénérés et des problèmes non différentiables, Ann. Fac. Sci. Toulouse Math. (5), 9 (1988), pp. 381- 412.
3 – J.-P. Raymond, Théorème d’existence pour des problèmes variationnels non convexes, Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), pp. 43-64.
2 – J.-P. Raymond, Champs hamiltoniens, relaxation et existence de solutions en calcul des variations, J. Differential Equations, 70 (1987), pp. 226-274.
1 – J.-P. Raymond, Condition nécessaires et suffisantes d’existence de solutions en calcul des variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), pp. 169-202.
Conference Proceedings
2 – J.-P. Raymond, Existence and bang-bang theorems for control problems governed by hyperbolicequations, in Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), vol. 18 ofSer. Adv. Math. Appl. Sci., WorldSci. Publishing, River Edge, NJ, 1994, pp. 261-277.
1 – J.-P. Raymond, Nonconvex problems in calculus of variations, in Progress in partialdifferential equations: the Metz surveys, vol. 249 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1991, pp. 57-65.