BOOST AN ANR BLANC PROJECT

8Aug/11Off

Publications


  1. S.Brull, P.Degond, F.Deluzet. Degenerate anisotropic elliptic problems and magnetized plasmas simulations. CICP, (2012), 11, pp147-178.
  2. S.Brull, P.Degond, F.Deluzet, A.Mouton. An asymptotic preserving scheme for a bifluid Euler-Lorentz system. Kinetic and Related Models,(2011).
  3. A. Mentrelli, C. Negulescu. Asymptotic-Preserving scheme for highly anisotropic non-linear diffusion equations. Journal of Comp. Phys. 231 (2012), 8229--8245.
  4. P. Degond, F. Deluzet, D. Savelief. Numerical approximation of the Euler-Maxwell model in the quasineutral limit. Journal of Computational Physics, 231 (2012), pp. 1917-1946.
  5. P. Degond, H. Liu, D. Savelief, M-H. Vignal. Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit. Journal of Scientific Computing, 51 (2012), pp. 59-86.
  6. P. Degond, A. Lozinski, J. Narski & C. Negulescu, An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. Journal of Computational Physics,231 (2012), pp. 2724-2740.
  7. P. Degond, F. Deluzet, A. Lozinski, J. Narski , C. Negulescu. Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences, 10 (2012), pp. 1-31.
  8. G. Dimarco. The hybrid moment guided Monte Carlo method for the Boltzmann equation.  Kinetic and Related Models, Vol 6, pp. 291-315 (2013)
  9. S.Brull, F.Deluzet, A.Mouton. Numerical resolution of an anisotropic non linear diffusion problem. To appear in Communications in Mathematical Sciences.
  10. G. Dimarco, R. Loubere. Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation. Journal of Computational Physics, vol 255, pp. 680-698 (2013).
  11. G. Dimarco and R. Loubere. Towards an ultra efficient kinetic scheme. Part II: The high order case.  Journal of Computational Physics, vol 255,  pp. 699-719 (2013).. 
  12. G. Dimarco and L. Pareschi. High order asymptotic preserving schemes for the Boltzmann equation.  C. R. Acad. Sci. Paris, Ser. I 350, pp. 481–486 (2012). 
  13. G. Dimarco, L. Pareschi. Asymptotic preserving implicit-explicit Runge-Kutta methods for non linear kinetic equations. SIAM Journal of Numerical Analysis, Vol. 51,  pp. 1064-1087 (2013) . 
  14. C. Negulescu. Asymptotic-Preserving schemes. Modeling, simulation and mathematical analysis of magnetically confined plasmas. Submitted to Riv. Mat. Univ. Parma.
  15. A. Lozinski, J. Narski, C. Negulescu. Highly anisotropic temperature balance equation and its asymptotic-preserving resolution. Submitted to Mathematical Modelling and Numerical Analysis.
  16. G. Dimarco, L. Pareschi and V. Rispoli. Implicit-Explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors.  Submitted.
  17. G. Dimarco, L. Mieussens, V. Rispoli.  An asymptotic preserving automatic domain decomposition method for the Vlasov-Poisson-BGK system with applications to plasmas. Submitted.
  18. Jacek Narski, Maurizio Ottaviani. Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary  anisotropy direction. Submitted.
Filed under: Publications Comments Off
   
Mentions Légales