Papers in International Journals
74 – S. Chowdhury, M. Ramaswamy, J.-P. Raymond, Controllability and Stabilizability of the Linearized Compressible Navier Stokes System in One Dimension, SIAM J. Control Optim. 50 (2012), 2959–2987.
72 – H. Arfaoui, F. Ben Belgacem, H. El Fekih, J.-P. Raymond, Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete Contin. Dyn. Syst. Ser. B 15 (2011), no. 3, 491–511.
71 – P. A. Nguyen, J.-P. Raymond, Pointwise control of the Boussinesq system. Systems Control Lett. 60 (2011), 249–255.
70 – S. Dharmatti, L. Thevenet, J.-P. Raymond, $H^\infty$ Feedback Boundary Stabilization of the two dimensional Navier-Stokes Equations, SIAM J. Control Optim. 49 (2011), 2318-2348.
69 – J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete and Continuous Dynamical Systems – B, 14 (2010), 1537 – 1564.
67 – S. Kesavan, J.-P. Raymond, On a degenerate Riccati equation, Control and Cybernetics, 38 (2009), 1393 – 1410.
65 – J.-M. Buchot, J.-P. Raymond, Feedback stabilization of a boundary layer equation, part 2: Nonhomogeneous state equations and numerical experiments, Applied Mathematics Research Express, 2 (2009), 87 – 122. pdf
64 – J.-M. Buchot, J.-P. Raymond, Feedback stabilization of a boundary layer equation, part 1: Homogeneous state equations, ESAIM Control Optim. Calc. Var. 17 (2011), 506–551.
http://www.math.univ-toulouse.fr/~raymond/Buchot-R-COCV09.pdf
63 – J.-P. Raymond, L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete and Continuous Dynamical Systems (A), 27 (2010), 1159 – 1187.
http://www.math.univ-toulouse.fr/~raymond/R-T-DCDSA09.pdf
62 – L. Thevenet, J.-M. Buchot, J.-P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equations, ESAIM COCV, 16 (2010), 929 – 955.
http://www.math.univ-toulouse.fr/~raymond/Thevenet-B-R-COCV09.pdf
61 – P. A. Nguyen, J.-P. Raymond, Control localized on thin structure for the linearized Boussinesq system, J. of Optim. Theory and Appl. 141 (2009), 147-165.
56 – J.-P. Raymond, Feedback boundary stabilization of the three dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. 87 (2007), 627-669.
55 – J.-P. Raymond, Stokes and Navier-Stokes equations with non homogeneous boundary conditions, Annales de l’IHP, Analyse non linéaire, 24 (2007), 921-951.
54 – J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations, SIAM J. Control and Optim., Vol. 45 (2006), 790-828.
50 – J.-M. Buchot, J.-P. Raymond, The linearized Crocco equation, J. of Math. Fluid Mecahnics, Vol. 8 (2006), 510-541.
46 – P. Martinez, J.-P. Raymond, J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), pp. 709-728.
45 – S. Anita, J.-P. Raymond, Positive stabilization of a parabolic equation by controls localized on a curve, J. Math. Anal. Appl., 286 (2003), pp. 107-115.
42 – P. Martinez, J.-P. Raymond, J. Vancostenoble, Nulle contrôlabilité régionale d’une équation de type Crocco linéarisée, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 581-584.
Submitted papers
1 – avec P. A. Nguyen, Boundary stabilization of the Navier-Stokes equations in the case of mixedboundary conditions, soumis à SIAM J. Control Optim.
Popularization
1 – J.-P. Raymond, P. Villedieu, Simuler et contrôler les écoulements, magazine scientifique del’université Paul Sabatier, numéro 8, Novembre 2006, page 23 (Numéro ‘La génomique Les Mathématiques’)
2 – J.-P. Raymond, Optimisation et contrôle de processus industriels et économiques, Encyclopédiede l’Informatique et des Systèmes d’Information, pp. 849-860, Vuibert, 2006.
Conference Proceedings
12 – J.-P. Raymond, A family of stabilization problems of the Oseen equations, in Control of coupledpartial differential equations, 269-291, Internat. Ser. Numer. Math., 155, Birkhäuser, Basel, 2007.
11 – J.-P. Raymond, Feedback boundary stabilization of the two and the three dimensional Navier-Stokes equations, Oberwolfach Reports 2 (2005), 1048-1050.
9 – J.-P. Raymond, Local boundary stabilization of the Navier-Stokes equations, in ‘ControlSystems: Theory, Numerics and Applications’, http://pos.sissa.it, 2005.
7 – J.-M. Buchot, J.-P. Raymond, A linearized model for boundary layer equations, ISNM, Birkhäuser,139 (2001), 31-42.