Systems of partial differential equations

Papers in International Journals

76 – J.-P. Raymond, M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures et Appl., to appear.

75 – Y. Grisel, V. Mouysset, P.A. Mazet, J.-P. Raymond, Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements. Inverse Problems 28 (2012), 055003, 19 pp.

74 – S. Chowdhury, M. Ramaswamy, J.-P. Raymond, Controllability and Stabilizability of the Linearized Compressible Navier Stokes System in One Dimension, SIAM J. Control Optim. 50 (2012), 2959–2987.

73 – A. K. Nandakumaran, R. Prakash, J.-P. Raymond, Asymptotic analysis and error estimates for an optimal control problem with oscillating boundaries, Ann. Univ. Ferrara, 2011, DOI 10.1007/s11565-011-0135-3.

72 – H. Arfaoui, F. Ben Belgacem, H. El Fekih, J.-P. Raymond, Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete Contin. Dyn. Syst. Ser. B 15 (2011), no. 3, 491–511.

71 – P. A. Nguyen, J.-P. Raymond, Pointwise control of the Boussinesq system. Systems Control Lett. 60 (2011), 249–255.

70 – S. Dharmatti, L. Thevenet, J.-P. Raymond, $H^\infty$ Feedback Boundary Stabilization of the two dimensional Navier-Stokes Equations, SIAM J. Control Optim. 49 (2011), 2318-2348.

69 – J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete and Continuous Dynamical Systems – B, 14 (2010), 1537 – 1564.

68 – J.-P. Raymond, Feedback stabilization of a fluid-structure model, SIAM J. Control and Optimization, 48 (2010), 5398 – 5443. pdf

67 – S. Kesavan, J.-P. Raymond, On a degenerate Riccati equation, Control and Cybernetics, 38 (2009), 1393 – 1410.

66 – J.-P. Raymond, M. Vanninathan, Null controllability of a Fluid – Solid Structure model, J. Diff. Eq., 248 (2010), pp. 1826-1865.

65 – J.-M. Buchot, J.-P. Raymond, Feedback stabilization of a boundary layer equation, part 2: Nonhomogeneous state equations and numerical experiments, Applied Mathematics Research Express, 2 (2009), 87 – 122. pdf

64 – J.-M. Buchot, J.-P. Raymond, Feedback stabilization of a boundary layer equation, part 1: Homogeneous state equations, ESAIM Control Optim. Calc. Var. 17 (2011), 506–551.
http://www.math.univ-toulouse.fr/~raymond/Buchot-R-COCV09.pdf

63 – J.-P. Raymond, L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete and Continuous Dynamical Systems (A), 27 (2010), 1159 – 1187.
http://www.math.univ-toulouse.fr/~raymond/R-T-DCDSA09.pdf

62 – L. Thevenet, J.-M. Buchot, J.-P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equations, ESAIM COCV, 16 (2010), 929 – 955.
http://www.math.univ-toulouse.fr/~raymond/Thevenet-B-R-COCV09.pdf

61 – P. A. Nguyen, J.-P. Raymond, Control localized on thin structure for the linearized Boussinesq system, J. of Optim. Theory and Appl. 141 (2009), 147-165.

60 – E. Casas, M. Mateos, J.-P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM COCV, 15 (2009), 782-809.

59 – M. Vanninathan, J.-P. Raymond, Null controllability in a heat–solid structure model, Applied Mathematics and Optimization, 59 (2009), 247-273.

58 – L. Cot, J. Vancostenoble, J.-P. Raymond, Exact controllability of an aeroacoustic model with a Neumann and a Dirichlet boundary control, SIAM J. Control and Optimization, 48 (2009), 782-809.

57 – E. Casas, M. Mateos, J.-P. Raymond, Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations, SIAM J. Control Optim. 46 (2007), 952-982.

56 – J.-P. Raymond, Feedback boundary stabilization of the three dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. 87 (2007), 627-669.

55 – J.-P. Raymond, Stokes and Navier-Stokes equations with non homogeneous boundary conditions, Annales de l’IHP, Analyse non linéaire, 24 (2007), 921-951.

54 – J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations, SIAM J. Control and Optim., Vol. 45 (2006), 790-828.

53 – E. Casas, J.-P. Raymond, The stability in W^{s,p}(Gamma) spaces of the L^2-projections on some convex sets of finite element function spaces, Num. Funct. An. Optim., Vol. 27 (2006), 117-137.

52 – E. Casas, J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control of semilinear elliptic equations, SIAM J. Control and Optim., Vol. 45 (2006), 1586-1611.

51 – S. Gombao, J.-P. Raymond, Hamilton-Jacobi equations for control problems of parabolic equations, ESAIM COCV, Vol. 12 (2006), 311-349.

50 – J.-M. Buchot, J.-P. Raymond, The linearized Crocco equation, J. of Math. Fluid Mecahnics, Vol. 8 (2006), 510-541.

49 – J.-P. Raymond, M. Vanninathan, Exact controllability in fluid-solid structure: the Helmholtz model, ESAIM COCV, 11 (2005), 180-203.

48 – B. S. Mordukhovich, J.-P. Raymond, Neumann boundary control of hyperbolic equations with pointwise state constraints, SIAM, J. on Control and Optim., 43 (2005), 1354-1372.

47 – B. S. Mordukhovich, J.-P. Raymond, Dirichlet boundary control of hyperbolic equations in the presence of state constraints, Appl. Math. Optim., 49 (2004), pp. 145-157.

46 – P. Martinez, J.-P. Raymond, J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), pp. 709-728.

45 – S. Anita, J.-P. Raymond, Positive stabilization of a parabolic equation by controls localized on a curve, J. Math. Anal. Appl., 286 (2003), pp. 107-115.

44 – F. Ben Belgacem, H. El Fekih, J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), pp. 121-136.

43 – N. Arada, J.-P. Raymond, Time optimal problems with Dirichlet boundary controls, Discrete Contin. Dyn. Syst., 9 (2003), pp. 1549-1570.

42 – P. Martinez, J.-P. Raymond, J. Vancostenoble, Nulle contrôlabilité régionale d’une équation de type Crocco linéarisée, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 581-584.

41 – N. Arada, J.-P. Raymond, F. Tröltzsch, On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces, Comput. Optim. Appl., 22 (2002), pp. 369-398.

40 – N. Arada, J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations. II – Problems with pointwise state constraints, Appl. Math. Optim., 45 (2002), pp. 145-167.

39 – N. Arada, J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations. I – Problems with no state constraints, Appl. Math. Optim., 45 (2002), pp. 125-143.

38 – P. A. Nguyen, J.-P. Raymond, Control localized on thin structures for semilinear parabolic equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), vol.of Stud. Math. Appl., North-Holland, Amsterdam, 2002, pp. 591-645.

37 – P. A. Nguyen, J.-P. Raymond, Control problems for convection-diffusion equations with control localized on manifolds, ESAIM Control Optim. Calc. Var., 6 (2001), pp. 467-488.

36 – F. Flores-Bazan, J.-P. Raymond, A variational problem related to a continuous-time allocation process for a continuum of traders, J. Math. Anal. Appl., 261 (2001), pp. 448-460.

35 – E. Casas, M. Mateos, J.-P. Raymond, Pontryagin’s principle for the control of parabolic equations with gradient state constraints, Nonlinear Anal., 46 (2001), pp. 933–956.

34 – J.-P. Raymond, H. Zidani, Time optimal problems with boundary controls, Differential Integral Equations, 13 (2000), pp. 1039-1072.

33 – J.-P. Raymond, F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints, Discrete Contin. Dynam. Systems, 6 (2000), pp. 431-450.

32 – J. Droniou, J.-P. Raymond, Optimal pointwise control of semilinear parabolic equations, Nonlinear Anal., 39 (2000), pp. 135-156.

31 – N. Arada, J.-P. Raymond, Pontryagin’s principle for local solutions of control problems with mixed control-state constraints, SIAM J. Control Optim., 39 (2000), pp. 1182-1203.

30 – N. Arada, H. El Fekih, J.-P. Raymond, Asymptotic analysis of some control problems, Asymptot. Anal., 24 (2000), pp. 343-366.

29 – N. Arada, J.-P. Raymond, Optimal control problems with mixed control-state constraints, SIAM J. Control Optim., 39 (2000), pp. 1391-1407.

28 – N. Arada, M. Bergounioux, J.-P. Raymond, Minimax controls for uncertain parabolic systems, SIAM J. Control Optim., 38 (2000), pp. 1481-1500.

27 – N. Arada, J.-P. Raymond, Approximation of optimal control problems with state constraints, Numer. Funct. Anal. Optim., 21 (2000), pp. 601-621.

26 – N. Arada, J.-P. Raymond, Necessary optimality conditions for control problems and the Stone-Cech compactification, SIAM J. Control Optim., 37 (1999), pp. 1011-1032.

25 – N. Arada, J.-P. Raymond, Minimax control of parabolic systems with state constraints, SIAM J. Control Optim., 38 (1999), pp. 254-271.

24 – N. Arada, J.-P. Raymond, Stability analysis of relaxed Dirichlet boundary control problems, Control Cybernet., 28 (1999), pp. 35-51.

23 – N. Arada, J.-P. Raymond, Optimality conditions for state-constrained Dirichlet boundary control problems, J. Optim. Theory Appl., 102 (1999), pp. 51-68.

22 – J.-P. Raymond, H. Zidani,   Pontryagin’s principle for time-optimal problems, J. Optim. Theory Appl., 101 (1999), pp. 375-402.

21 – J.-P. Raymond, H. Zidani,  Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations, Appl. Math. Optim., 39 (1999), pp. 143-177.

20 – J.-P. Raymond, H. Zidani, Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls, SIAM J. Control Optim., 36 (1998), pp. 1853-1879.

19 – N. Arada, J.-P. Raymond, State-constrained relaxed problems for semilinear elliptic equations, J. Math. Anal. Appl., 223 (1998), pp. 248-271.

18 – J.-J. Alibert, J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), pp. 697-704.

17 – J.-J. Alibert, J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls, Numer. Funct. Anal. Optim., 18 (1997), pp. 235-250.

16 – D. Seghir, J.-P. Raymond, Existence and characterization of BV-curves for problems of calculus of variations, Nonlinear Anal., 28 (1997), pp. 1109-1132.

15 – J.-P. Raymond, Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints, Discrete Contin. Dynam. Systems, 3 (1997), pp. 341-370.

14 – J.-P. Raymond, Optimal control problems in spaces of functions of bounded variation, Differential Integral Equations, 10 (1997), pp. 105-136.

13 – J.-P. Raymond, A new definition of nonconservative products and weak stability results, Boll. Un. Mat. Ital. B (7), 10 (1996), 681-699.

12 – D. Seghir, J.-P. Raymond, Lower semicontinuity and integral representation of functionals in BV([a,b];R^m). J. Math. Anal. Appl. 188 (3) (1994), pp. 956-984.

11 – J.-P. Raymond, Existence and uniqueness results for minimization problems with nonconvex functionals, J. Optim. Theory Appl., 82 (1994), pp. 571-592.

10 – J.-P. Raymond, An anti-plane shear problem, J. Elasticity, 33 (1993), pp. 213-231.

9 – J.-P. Raymond, Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems, Appl. Math. Optim., 26 (1992), pp. 39-62.

8 – J.-P. Raymond, Existence of minimizers for vector problems without quasiconvexity condition, Nonlinear Anal., 18 (1992), pp. 815-828.

7 – J.-P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems, Proc. Roy. Soc. Edinburgh Sect. A, 117 (1991), pp. 59-73.

6 – J.-P. Raymond, Existence theorems in optimal control problems without convexity assumptions, J. Optim. Theory Appl., 67 (1990), pp. 109-132.

5 – J.-P. Raymond, Regularité globale des solutions de systèmes elliptiques non linéaires, Rev. Mat. Univ. Complut. Madrid, 2 (1989), pp. 241-270.

4 – J.-P. Raymond, Théorèmes de régularité locale pour des systèmes elliptiques dégénérés et des problèmes non différentiables, Ann. Fac. Sci. Toulouse Math. (5), 9 (1988), pp. 381- 412.

3 – J.-P. Raymond, Théorème d’existence pour des problèmes variationnels non convexes, Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), pp. 43-64.

2 – J.-P. Raymond, Champs hamiltoniens, relaxation et existence de solutions en calcul des variations, J. Differential Equations, 70 (1987), pp. 226-274.

1 – J.-P. Raymond, Condition nécessaires et suffisantes d’existence de solutions en calcul des variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), pp. 169-202.

Submitted papers

1 – avec P. A. Nguyen, Boundary stabilization of the Navier-Stokes equations in the case of mixedboundary conditions, soumis à SIAM J. Control Optim.

Popularization

1 – J.-P. Raymond, P. Villedieu, Simuler et contrôler les écoulements, magazine scientifique del’université Paul Sabatier, numéro 8, Novembre 2006, page 23 (Numéro ‘La génomique Les Mathématiques’)

2 – J.-P. Raymond, Optimisation et contrôle de processus industriels et économiques, Encyclopédiede l’Informatique et des Systèmes d’Information, pp. 849-860, Vuibert, 2006.

Conference Proceedings

15 – J.-P. Raymond, Stabilization of fluid – structure model, Oberwolfach Reports 7 (2010).

14 – J.-P. Raymond, M. Vanninathan, Null Controllability for a coupled Heat – Finite DimensionalBeam System, International Series of Numerical Mathematics, Vol. 158, 221-238, 2009.

13 – J.-P. Raymond, M. Vanninathan, Null controllability of a heat – solid structure model,Oberwolfach Reports 5 (2008), 637-639.

12 – J.-P. Raymond, A family of stabilization problems of the Oseen equations, in Control of coupledpartial differential equations, 269-291, Internat. Ser. Numer. Math., 155, Birkhäuser, Basel, 2007.

11 – J.-P. Raymond, Feedback boundary stabilization of the two and the three dimensional Navier-Stokes equations, Oberwolfach Reports 2 (2005), 1048-1050.

10 – B. Mordukhovich, J.-P. Raymond, Optimal boundary control of hyperbolic equations with pointwisestate constraints, Nonlinear Analysis 63 (5-7) (2005), 823-830.

9 – J.-P. Raymond, Local boundary stabilization of the Navier-Stokes equations, in ‘ControlSystems: Theory, Numerics and Applications’, http://pos.sissa.it, 2005.

8 – L. Cot, J.-P. Raymond, J. Vancostenoble, Exact controllability of an aeroacoustic model, ESAIMproceedings, 17 (2007), 26-49. Proceedings of the Workshop on Control, Set-Valued Analysis andApplications, Pointe-à-Pitre, April 5-8,2004.

7 – J.-M. Buchot, J.-P. Raymond, A linearized model for boundary layer equations, ISNM, Birkhäuser,139 (2001), 31-42.

6 – E. Casas, H. Zidani, J.-P. Raymond, Optimal control problem governed by semilinear ellipticequations with integral control constraints and pointwise state constraints, in Control and estimation ofdistributed parameter systems(Vorau, 1996), vol. 126 of Internat. Ser. Numer. Math., Birkhäuser, Basel,1998, pp. 89-102.

5 – J.-P. Raymond, H. Zidani, Optimal control problem governed by a semilinear parabolic equation,in System modelling and optimization (Prague, 1995), Chapman & Hall, London, 1996, pp. 211-217.

4 – J.-P. Raymond, Optimal control problem for semilinear parabolic equations with pointwise stateconstraints, in Modelling and optimization of distributed parameter systems (Warsaw, 1995), Chapman &Hall, New York, 1996, pp. 216-222.

3 – J.-P. Raymond, Pontryagin’s principle for state-constrained control problems and unboundedcontrols, in Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), Collect. études,Presses Univ. Perpignan, Perpignan,1995, pp. 227-237.

2 – J.-P. Raymond, Existence and bang-bang theorems for control problems governed by hyperbolicequations, in Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), vol. 18 ofSer. Adv. Math. Appl. Sci., WorldSci. Publishing, River Edge, NJ, 1994, pp. 261-277.

1 – J.-P. Raymond, Nonconvex problems in calculus of variations, in Progress in partialdifferential equations: the Metz surveys, vol. 249 of Pitman Res. Notes Math. Ser., Longman Sci. Tech.,Harlow, 1991, pp. 57-65.