Prochains exposés
SPOT 98 – Monday 5 May 2025
14h – Juan Enrique Martinez Legaz (Universitat Autònoma de Barcelona, Spain) – On Five Types of Voronoi Diagrams
In addition to the classical Voronoi diagrams in R^n, we delve into other variants: higher-order cells, farthest cells based on both Euclidean and Bregman distances, and power cells. Despite their diversity, all these Voronoi diagrams share a common feature: their cells are closed convex sets. The results presented in this talk are contained in joint works with E. Allevi, M. A. Goberna, E. Naraghirad, R. Riccardi, V. Roshchina, M. Tamadoni Jahromi, M. I. Todorov and V. N. Vera de Serio.
15h – Vivek Laha (Banaras Hindu University, Varanasi, India) – On quasidifferentiable interval-valued multiobjective optimization
The aim of this talk is to investigate approximate solutions in an interval valued multiobjective optimization problem with inequality constraints involving quasidifferentiable functions, which is denoted by QIVMOP. We establish the Karush-Kuhn-Tucker (KKT) type necessary optimality conditions to identify a type-2 E-quasi weakly Pareto solution of the QIVMOP under the assumption of a suitable constraint qualification (CQ). We have used the quasidifferential calculus utilizing some results developed in [Antczak T.: Optimality conditions in quasidifferentiable vector optimization. J. Optim. Theory Appl. 171, 708-725 (2016)]. We introduce the concept of approximate convexity and generalized approximate convexity of the functions in terms of quasidifferential sum. We also establish sufficient optimality conditions under the assumptions of generalized approximate convexity of the function in terms of quasidifferential sum. The concept of approximate version of vector variational inequalities (VVIs) in terms of quasidifferential sum is introduced. Furthermore, we study the relationship between QIVMOP and approximate quasidifferentiable vector variational inequalities (E-QVVIs) under the assumptions of approximate convexity and generalized approximate convexity in terms of quasidifferential sum. We extend some results of [Zhang et al.: Relationships between interval-valued vector optimization problems and vector variational inequalities. Fuzzy Optimization and Decision Making. 15, 33-55 (2016)] using quasidifferential analysis. Finally, we apply our results in nonconvex composite interval-valued multiobjective optimization models to identify a type-2 E-quasi weakly Pareto solution.
Comité local d’organisation
- Sonia Cafieri (ENAC)
- Olivier Cots (INP-ENSEEIHT et IRIT)
- Frank Iutzeler (UPS et IMT)
- Victor Magron (LAAS-CNRS)
- Pierre Maréchal (UPS et IMT)
- Emmanuel Soubies (IRIT et CNRS)
- Edouard Pauwels (UT1 et TSE)
- Aude Rondepierre (INSA et IMT)
Cf un glossaire expliquant ces sigles et affiliations du système universitaire toulousain.
Fréquence et structure
Une séance par mois environ, avec deux conférenciers chaque fois (deux conférences de type différent : une orientée fondements et une orientée applications, un conférencier de l’environnement toulousain et un conférencier extérieur, un conférencier du milieu académique et un conférencier du milieu de l’industrie et des services, etc.).
Horaire habituel : le lundi après-midi de 14h à 16h.
Lieu
Sauf indication contraire, à la salle des thèses (C002) à l’ENSEEIHT (N7), 2 rue Charles Camichel, 31000 Toulouse (métro B, François Verdier). Attention, présentez-vous au poste de garde afin d’accéder au site.