Publications

29/06/2017

Liste de publications

Thèses

  1. J. Vancostenoble,
    Stabilisation non monotone de systèmes vibrants et Contrôlabilité,
    Thèse de doctorat de l’Université de Rennes I, 14 Décembre 1998.
  2. J. Vancostenoble,
    Contrôle et stabilisation de systèmes d’équations aux dérivées partielles,
    Thèse d’Habilitation à diriger des recherches de l’Université Paul Sabatier Toulouse III, 28 Novembre 2005.

Monographie

  1. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Global Carleman estimates for degenerate parabolic operators with applications,
    Memoirs of the American Mathematical Society,
    Publication Year: 2016; Volume 239, Number 1133, 209 pages.

Articles (revues et volumes de conférences)

  1. J. Vancostenoble,
    Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks,
    SIAM J. Math. Anal. 30, No. 1, 140-154 (1999).
  2. J. Vancostenoble,
    Optimalité d’estimations d’énergie pour une équation des ondes amortie,
    C. R. Acad. Sci. Sér. I Math. 328, 777-782 (1999).
  3. P. Martinez, J. Vancostenoble,
    Exponential stability for the wave equation with weak nonmonotone damping,
    Portugal. Math. 57, 3, 285-310 (2000).
  4. P. Martinez, J. Vancostenoble,
    Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks,
    SIAM J. Control Optim. 39, 3, 776-797 (2000).
  5. J. Vancostenoble,
    Strong stabilization (via weak stabilization) of hybrid systems,
    ESAIM: Proc. 8, « Contrôle des systèmes gouvernés par des E.D.P. », 151-159 (2000)
  6. M. Pierre, J. Vancostenoble,
    Strong decay for one-dimensional wave equations with nonlinear and nonmonotone boundary feedbacks,
    Control Cybernet. 29, 2, 473-484 (2000).
  7. J. Vancostenoble,
    Exact controllability of the damped wave equation with distributed controls,
    Acta Math. Hungar. 89, 1-2, 71-92 (2000).
  8. J. Vancostenoble,
    Weak asymptotic decay for a wave equation with gradient dependent damping,
    Asymptotic Analysis 26, 1-20 (2001).
  9. P. Martinez, J. Vancostenoble,
    Stabilisation et contrôle intermittent de l’équation des ondes,
    C. R. Acad. Sci. Sér. I Math. 333, 9, 851-854 (2001).
  10. P. Martinez, J. Vancostenoble,
    Stabilization of the wave equation by on-off and positive-negative feedbacks,
    ESAIM: Control Optim. Calc. Var. 7, 335-378 (2002).
  11. P. Martinez, J-P. Raymond, J. Vancostenoble,
    Nulle contrôlabilité régionale d’une équation de type Crocco linéarisée,
    C. R. Acad. Sci. Sér. I Math. 334, no. 7, 581–584 (2002).
  12. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Nulle contrôlabilité régionale pour des équations de la chaleur dégénérées,
    C. R. Acad. Sci. Sér. IIB Mécanique 330, 397-401 (2002).
  13. V. Komornik, P. Martinez, M. Pierre, J. Vancostenoble,
    « Blow-up » of bounded solutions of ordinary differential equations,
    Acta Sci. Math. (Szeged) 69, 651-657 (2003).
  14. P. Martinez, J.-P. Raymond, J. Vancostenoble,
    Regional null controllability of a linearized Crocco type equation,
    SIAM J. Control Optim., Vol. 42, no. 2, 709-728 (2003).
  15. P. Martinez, J. Vancostenoble,
    Exact controllability « in arbitrarily short time » of the semilinear wave equation,
    Discrete Contin. Dynam. Systems 9, no. 4, 901-924 (2003).
  16. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Null controllability of the heat equation in unbounded domains by a finite measure control region,
    ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, 381–408.
  17. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Persistent regional null controllability for a class of degenerate parabolic equations,
    Commun. Pure Appl. Anal. 3 (2004), no. 4, 607–635.
  18. G. Fragnelli, P. Cannarsa, J. Vancostenoble,
    Regional controllability of semilinear parabolic equations in unbounded domains,
    Proc.  »Sixth Portuguese Conference on Automatic Control », Faro, Portugal, June 7-9, 2004.
  19. A. Haraux, P. Martinez, J. Vancostenoble,
    Asymptotic stability for intermittently controlled second order evolution equations,
    SIAM J. Control Optim., Vol. 43, no. 6, 2089-2108 (2005).
  20. G. Fragnelli, P. Martinez, J. Vancostenoble,
    Qualitative properties of a population dynamics describing pregnancy,
    Mathematical Models and Methods in Applied Sciences, no. 4, 507-554 (2005).
  21. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Null controllability of degenerate heat equations,
    Adv. Differential Equations 10 (2005), no. 2, 153–190.
  22. P. Martinez, J. Vancostenoble,
    Carleman estimates for one-dimensional degenerate heat equations,
    J. Evol. Equ. 6, no. 2, 325-362 (2006).
  23. P. Martinez, J. Vancostenoble,
    Explosion en temps fini de solutions bornées d’équations différentielles ordinaires,
    Revue de la Filière Mathématique (ex revue de Mathématiques Spéciales), no. 116-3, 2006.
  24. P. Cannarsa, G. Fragnelli, J. Vancostenoble,
    Regional controllability of semilinear degenerate parabolic equations in bounded domains,
    J. Math. Anal. Appl. 320, no. 2, 804-818 (2006).
  25. P. Cannarsa, G. Fragnelli, J. Vancostenoble,
    Linear degenerate parabolic equations in bounded domains: controllability and observability,
    163-173, IFIP Int. Fed. Inf. Process., 202, Springer, New York, 2006.
  26. L. Cot, J.-P. Raymond, J. Vancostenoble,
    Exact controllability of an aeroacoustic model,
    ESAIM Proc., 17, CSVAA 2004-control set-valued analysis and applications, 26-49, EDP Sci., Les Ulis, 2007.
  27. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Carleman estimates for a class of degenerate parabolic operators,
    SIAM J. Control Optim., Vol. 47, no. 1, 1-19 (2008).
  28. J. Vancostenoble, E. Zuazua,
    Null controllability for the heat equation with singular inverse-square potential,
    Journal of Functional Analysis, Vol. 254, Issue 7, 1864-1902 (2008).
  29. P. Cannarsa, D. Rocchetti, J. Vancostenoble,
    Generation of analytic semi-groups in L^2 for a class of second order degenerate elliptic operators,
    Control Cybernet. Vol. 37, No. 4 (2008).
  30. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Carleman estimates and null controllability for boundary-degenerate parabolic operators,
    C. R. Acad. Sci. Sér. I Math. Vol. 347, 147-152 (2009).
  31. L. Cot, J.-P. Raymond, J. Vancostenoble,
    Exact controllability of an aeroacoustic model with a Neumann and a Dirichlet boundary control,
    SIAM J. Control Optim., Vol. 48, No. 3, 1489-1518 (2009).
  32. J. Vancostenoble, E. Zuazua,
    Hardy inequalities, Observability and Control for the wave and Schrodinger equations with singular potentials,
    SIAM J. Math. Anal., Vol. 41, No. 4, 1508-1532 (2009).
  33. J. Vancostenoble,
    Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems,
    Discrete Contin. Dynam. Systems, Discrete Contin. Dynam. Systems S, vol. 4, no. 3, 761-790 (2011).
  34. J. Vancostenoble,
    Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems,
    C. R. Acad. Sci. Sér. I Math., C. R. Acad. Sci. Sér. I Math.,Vol. 348, Issues 13-14, July 2010, Pages 801-805.
  35. J. Vancostenoble,
    Lipschitz stability in inverse source problems for singular parabolic equations, 
    Communications in Partial Differential Equations 36 (2011), no. 8, 1287-1317.
  36. J. Tort, J. Vancostenoble,
    Determination of the insolation function in a Sellers climate model,
    Annales de l’Institut Poincaré, Analyse Non Linéaire 29 (2012), no. 5, 683-713.
  37. P. Cannarsa, P. Martinez, J. Vancostenoble,
    The cost of controlling weakly degenerate parabolic equations by boundary controls,
    Mathematical Control and Related Fields (MCRF), Volume 7, Issue 2, June 2017, Pages: 171 – 211 .
  38. G. Fragnelli, P. Martinez, J. Vancostenoble,
    A new age-dependent population model with diffusion and gestation processes,
    Riv. Mat. Univ. Parma, Vol. 7, No. 2, 2016.
  39. P. Martinez, J. Tort, J. Vancostenoble,
    Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold,
    Riv. Mat. Univ. Parma, Vol. 7, No. 2, 2016, 351-389 .
  40. P. Cannarsa, P. Martinez, J. Vancostenoble,
    The cost of controlling degenerate parabolic equations by boundary controls,
    submitted.
  41. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Precise estimates for biorthogonal families under asymptotic gap conditions,
    submitted.
  42. P. Martinez, J. Vancostenoble,
    The cost of boundary controllability for a parabolic equation with inverse square potential, submitted.

Actes de conférences (résumés de conférences)

  1. J. Vancostenoble,
    Stabilité asymptotique faible d’équations d’évolution du second ordre soumises à des contrôles non linéaires, non monotones,
    Revue de l’Association Femmes et Mathématiques, 4, supplément, 69-72 (2000).
  2. L. Cot, J.-P. Raymond, J. Vancostenoble,
    Exact controllability of an aeroacoustic model,
    Proceeding Sixteenth International Symposium on Mathematical Theory of Networks and Systems, MTNS 2004, Katholieke Universiteit Leuven, Belgium.
  3. P. Cannarsa, P. Martinez, J. Vancostenoble,
    Null controllability of degenerate parabolic equations,
    Proc. Appl. Math. Mech. 7, 1061601-1061602 (2007).

Publications internes (non publiées dans des revues)

  1. J. Vancostenoble,
    Stabilisation faible de l’équation des ondes par un contrôle non linéaire non monotone,
    Prépublications Institut Elie Cartan, Univ. Nancy I, n. 3, 1997, 28 pages.
  2. V. Komornik, P. Martinez, M. Pierre, J. Vancostenoble,
    Bounded maximal solutions of ordinary differential equations,
    Prépublication M.I.P. n. 02.19, 2002, 17 pages.

 

Les commentaires sont fermés.
Mentions Légales