Journal Preprints
- Costa M. & Klein T. & Gadat, S. Black mirror: a stochastic algorithm for Sobol indices recovery. In progress.
- Dieuleveut, A. & Fort, G. & Gadat, S. & Moulines, E. GMM learning with Stochastic mirror descent. In progress.
- Crespo, M. Discretisation of Langevin diffusion in the weak log-concave case. Submitted.
- De Castro Y. & Gadat S. & Marteau C. FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse optimisation on Measures. Submitted.
- Gadat, S & Villeneuve, S Wasserstein geometry of information retrieval (2023). Working Paper.
- Gadat S. & Panloup F. & Pellegrini C. On the cost of Bayesian posterior mean strategy for log-concave models (2022). Submitted.
Journal Publications
2024
- Crespo M. & Gadat S. & Gendre X. Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions (2024). Electronic Journal of Probability, to appear.
- Doury, A. & Somot, S. & Gadat, S. On the suitability of a Convolutional Neural Network based RCM-Emulator for fine spatio-temporal precipitation. Climate and Dynamics, to appear.
- Lalanne, C. & Gadat, S.Privately Learning Smooth Distributions on the Hypercube by Projections. ICML.
2023
- Costa M. & Huang L. & Gadat S. CV@R penalized portfolio optimization with biased stochastic mirror descent(2022). Finance and Stochastics, to appear.
- Rey-Barroso J. & Munaretto A. & Rouquié N. & Mougel A. & Chassan M. & Gadat S & Frause F. & Dewingle O. & Cadot S. & Quillet-Mary A & Ysebaert L. & Dupré L. Multifaceted modulation of motility properties in leukemic and non-leukemic lymphocytes upon ibrutinib treatment of chronic lymphocytic leukemia. (2022). Haematologica.
2022
- Gadat, S. & Gavra, I. Asymptotic study of stochastic adaptive algorithm in non-convex landscape (2022). Journal of Machine Learning Research.
- Gadat S. & Panloup F. Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong convexity (2022). Stochastic Processes and their Applications.
- Doury A. & Somot S. & Gadat, S. & Ribes, A. & Corre, L. Regional Climate Model emulator based on deep learning: concept and first evaluation of a novel hybrid downscaling approach (2022). Climate and Dynamics.
- Bercu B & Bigot J. & Gadat, S. & Siviero, E. A stochastic Gauss-Newton algorithm for regularized semi-discrete optimal transport (2022). Information and Inference: A Journal of the IMA, to appear.
2021
- Costa M. & Gadat S. Non-asymptotic study of a recursive superquantile estimation algorithm (2021). Electronic Journal of Statistics, 15 (2) 4718-4769.
- Bercu B & Costa M. & Gadat S. Stochastic approximation algorithms for superquantiles estimation (2021). Electronic Journal of Probability, 26 (84) 1-26.
- Lafouresse, F. & Jugele R. & Müller S. & Doineau M. & Duplan-Eche V. & Espinosa E. & Puissegur, M.P. & Gadat S & Valitutti S. Stochastic asymmetric repartition of lytic machinery in dividing human CD8+ T cells generates heterogeneous killing behaviour (2021) eLife, 10:e62691 doi: 10.7554/eLife.62691.
- De Castro Y. & Gadat S. & Marteau C. & Maugis C. SuperMix: Sparse Regularization for Mixture (2021) Annals of Statistics,49 (3) 1779 – 1809.
2020
- Gadat S. & Gerchinovitz S. & Marteau C. Optimal functional supervised classification with separation condition (2020) Bernoulli, Volume 26, Number 3, 1797–1831.
- Gadat S. & Kahn J. & Marteau C. & Maugis C. Parameter recovery in two-component contamination mixtures: the L2 strategy. (2020) Annales de l’Institut Henri Poincaré (B), Volume 56, Number 2, 1391–1418.
2019
- Gonnord P. & Costa M. & Peres M. & Ysebaert L. & Gadat S. & Valitutti S. Patient clustering reveals CD8+ T cell central/effector memory dichotomy as an early marker of disease progression in chronic lymphocytic leukemia (2019) OncoImmunology, to appear.
- Costa M. & Gadat S. & Gonnord P. and Risser L. Cytometry inference through adaptive atomic deconvolution (2019). Journal of Nonparametric Statistics, Volume 3, Number 2.
2018
- Gadat S. & Panloup F. & Saadane, S. Stochastic Heavy Ball. Electronic Journal of Statistics,(2018) Volume 12, Number 1, 461-529.
- Gadat S. & Panloup F. & Saadane, S. Regret bound for Narendra-Shapiro bandit algorithms Stochastics, (2018), Volume 41, Number 1, 1744-2508. Matlab Implementation.
- Gadat S. & Gavra I. & Risser L. How to calculate the barycenter of a weighted graph (2018) Mathematics of Operation Research, Volume 43, Number 4.
2017
- Computational Integration to Model Tumor Dynamics in CLL Patients Treated with the Btk Inhibitor Ibrutinib (CompuTreatCLL): First Results of an Integrative Systems Biology Approach. (2017)
2016
- Gadat S. & Klein T. & Marteau C. Classification with the nearest neighbor rule in general finite dimensional spaces, (2016) Annals of Statistics, Volume 44, Number 3, 982-1009.
2015
- Bouttier, C & Babando, O & Gadat, S & Gerchinovitz, S. & Laporte, S. & Nicol, F. Adaptive simulated annealing with homogenization for aircraft trajectory optimization (2015). Operation Research Proceedings.
- Chopin, N & Gadat, S. & Guedj, B. & Guyader, A. & Vernet, E. On some recent advances in high dimensional Bayesian statistics. (2015) Esaim Proceedings and Surveys, Vol. 51, http://dx.doi.org/10.1051/proc/201551016.
- Gadat S.& Miclo, L. & Panloup F. A stochastic model for speculative bubbles. (2015) Alea, Latin American journal of probability and mathematical statistics, 12 (1), 491–532.
- Vasconcelos, Z. & Müller, S. & Wong, Y. & Gadat, S. & Valitutti, S. & Dupré, L. Individual human cytotoxic T Lymphocytes exhibit intraclonal heterogeneity in cumulative killing, (2015) Cell reports, Volume 11, Issue 9, p1474–1485, 9.
- Christophe, C. & Rodrigues, M. & Müller,S & Dupre,L. & Cattiaux,P & Gadat, S* and Valitutti, S* A biased competition theory of cytotoxic T lymphocytes interaction with tumor nodules, Plos One, (2015) DOI:10.1371/journal.pone.0120053.
2014
- Champion, M.& Chastaing, G. & Gadat, S. & Prieur, C. L2-boosting on a generalized Hoeffding decomposition for dependent variables. Application to sensitivity analysis, Statistica Sinica, (2014), doi:10.5705/ss.2013.310.
- Champion, M.& Cierco-Ayrolles, C. & Gadat, S. Vignes, M. Sparse regression and support recovery and support recovery with L2-Boosting algorithm, Journal of Statistical Planning and Inference, (2014), 155(C) :18–40.
- Bontemps D. & Gadat S. Bayesian methods for the Shape Invariant Model, Electronic Journal of Statistics (2014), 8:1522-1568.
- Gadat S.& Panloup F. Long time behaviour and stationary regime of memory gradient diffusions Annales de l’Institut Henri Poincaré (B) (2014), 50 :564–601.
- Dedieu, D.& Delpierre, C. & Gadat, S. & Lang, T. & Lepage, B. & Savy, N. Mixed Hidden Markov Model for Heterogeneous longitudinal data with missingness and errors in the Outcome variable . Journal de la Société Française de Statistique, (2014) Vol. 155 (1), 73-98.
2013
- Gadat S.& Panloup F. & Pellegrini C. Large Deviation Principle for invariant distributions of Memory Gradient Diffusions. Electronic Journal of Probability (2013), Volume 81, 1-34.
- Bigot J. & Gadat S.& Klein T. & Marteau C. Intensity estimation of non-homogeneous Poisson processes from shifted trajectories. Electronic Journal of Statistics, (2013), Volume 7 , 881-931.
- Gadat S.& Miclo, L. Spectral decompositions and L2-operator norms of toy hypocoercive semi-groups. Kinetic and Related Models, (2013), Volume 6, Number 2, 317–372.
2012
- Bigot J. & Christophe C. & Gadat S. Random action of compact Lie groups and minimax estimation of a mean pattern. IEEE, Transactions on Information Theory, (2012), Vol 58, Nr 6 p.3509-3520.
- Cohen, S. & Dejean, S. & Gadat S.& Adaptive sequential design for regression on multi-resolution bases. Statistics and Computing, (2012), Vol 22, Nr 2, p.753-772.
2010
- Bigot J. & Gadat S. & Marteau C. Sharp template estimation in a shifted curves model. Electronic Journal of Statistics, (2010), Vol 4 p.994-1021.
- Bigot J. & Gadat S. A Deconvolution Approach to estimation of a common shape in a shifted curves model. Annals of Statistics, (2010), Vol 38, Nr 4 p.2422-2464.
- Bigot J. & Gadat S. Smoothing under diffeomorphic constraints with homeomorphic splines. SIAM, Journal on Numerical Analysis, (2010), Vol 48, Nr 1 p.224-243.
2009
- Cabot, A. & Engler, H. & Gadat S. On the long time behavior of second order differential equations with asymptotic small dissipation. Transactions of the American Mathematical Society, (2009), Vol 361, p. 5983-6017.
- Bigot J. & Gadat S.& Loubes J.M. Statistical M-estimation and Consistency in large deformable models for Image Warping. Journal of Mathematical Imaging and Vision, (2009), Vol. 34, Nr. 3 , p. 270-290.
- Cabot, A. & Engler, H. & Gadat S. Second order differential equations with asymptotically small dissipation and piecewise flat potentials. Electronic Journal of Differential Equations, (2009), Vol 17, p.33-38.
- Villa N. & & Dkaki T. & Gadat S. & Inglebert J.-M. & Truong Q.-D. Community retrieval and visualization in large graphs. (2009), SciWatch Journal .
- Lê Cao K.A. & Gadat S.& Bonnet, A. Multiclass classification and gene selection with a stochastic algorithm. Computational Statistics and Data Analysis, (2009), Vol 53, Nr 10, p.3601-3615.
2008
- Gadat S. Jump Diffusion over Feature Space for object recognition. SIAM, Journal on Control and Optimization, (2008), Vol 47, Nr 2, p.904-935.
2007
- Lê Cao K.A. & Gadat S. & Gonçalves O. & Besse P. Selection of Biologically Relevant Genes with a Wrapper Stochastic Algorithm. Statistical Applications in Genetics and Molecular Biology, (2007), Vol 6, Nr 29.
- Gadat S.& Younès L. A stochastic algorithm for feature selection in pattern recognition. Journal of Machine Learning Research, (2007), Vol 8, p.509–547.
Unpublished manuscripts
- Cattiaux P. & Christophe C. & Gadat S. A stochastic model for cytotoxic T. Lymphocyte interaction with tumor nodules (2016).
Some Slides:
- Non asymptotic bound for stochastic averaging
- On second order dynamics related to optimization
- Regret bound for NS bandit algorithms
- Classification with the nearest neighbor rule in general finite dimensional spaces
- Habilitation à Diriger les Recherches
- Shape Invariant Model: A nonparametric Bayesian point of view
- A Boosting algorithm for sensitivity analysis: Hoeffding decomposition with dependent variables
- Deformable models and statistical consistency rates
- Optimisation with averaged gradient_method (deterministic and stochastic methods)
- Averaged gradient diffusion
- M estimation for deformable models
- Adaptive Sequential planning with model selection
Rapports Techniques
- J.M. Azaïs and S. Gadat. Automatisation de l’estimation par valeurs extremes pour la mesure d’integrite. Technical report, Institut de Mathematiques de Toulouse, 2011.
- J.M. Azaïs, S. Gadat, A. Lagnoux, and C. Mercadier. Algorithmes de splitting pour la mesure d’integrite. Technical report, Institut de Mathematiques de Toulouse, Institut Camille Jordan Lyon I, 2010.
- J.M. Azaïs, S. Gadat, and C. Mercadier. etude de la mesure d’integrite par la methode des valeurs extrêmes. Technical report, Institut de Mathematiques de Toulouse, Institut Camille Jordan Lyon I, 2009.
Some recent Conferences / Seminars:
- Statistics Seminar Lille (June 2015): Regret of Narendra Shapiro bandit algorithms
- Statistics Seminar Oxford (April 2015): Regret of Narendra Shapiro bandit algorithms
- Statistics Seminar TSE (April 2015): Regret of Narendra Shapiro bandit algorithms
- February 2014: Seminar of the CPTP: Some insights on interdiscipilnary research between statisticians and biologists
- November 2013: Mad Seminar – K nearest neighbour classification in general finite dimensional space.
-
S. Gadat and D. Bontemps. Shape invariant model, a bayesian point of view. In Workshop of Bayes Non Parametric, 2013, Paris, France, September 2013
- Statistic seminar, Orsay Mai 2013: Shape invariant model, a bayesian point of view
-
S. Gadat. Bayesian consitency for deformable models in image processing. In Proceedings of the 3th Annual Conference of Mathematiques pour l’Image, Orleans, France, June 2012.
- Statistics Seminar TSE (April 2012): Bayesian estimation in deformable inverse problems
- BIA Statistics seminar ( March 2011): Adaptive optimal design and model selection
-
J.M. Azaïs, D. Debailleux, S. Gadat, and N. Suard. Assessment of an ionosphere storm occurrence risk. In roceedings of the 2011 Conference ENC GNSS , London, England, November 2011.
-
J.M. Azaïs, S. Gadat, and N. Suard. Ionosphere severe storms and occurrence risk estimation. In Proceedings of the 7th Conference Extreme Value Analysis, Probabilistic and Statistical Models and their Applications, Lyon, France, June 2011
- Montpellier Statistics Seminar (October 2010): Bayesian estimation in deformable inverse problems
-
J.M. Azaïs, S. Gadat, C. Mercadier, and N. Suard. Gnss integrity achievement by using extreme value theory. In Proceedings of the 2009 Conference ION GNSS , San diego, USA, July 2009.
-
N. Villa, T. Dkaki, S. Gadat, J.M. Inglebert, and Q.D. Truong. Recherche et representation de communautes dans des grands graphes. In Proceedings of VSST 2009, Nancy, France, 2009.
-
S. Gadat. Markov hybrid process for variable selection in classication. In Proceedings of the 47th Conference on Decision and Control, Cancun, Mexico, December 2008.
-
K.A. Lê Cao, S. Gadat, P. Besse, and O. Goncalves. Application of a stochastic algorithm for gene selection. In 5th Workshop of Statistical methods for post-genomic data, 2007 , Paris, France, 2007.
-
S. Gadat, O. Gonalves, and K.A. Lê Cao. Gene selection with a stochastic algorithm for multiclass classification. In Proceedings of the 20th Annual Conference Proceedings of the 47th Conference Statistics for Data Mining, Learning and Knowledge Extraction, Aveiro, Portugal, August 2007.
-
S. Gadat. Extraction of attributes for visual object recognition and dna microarray analysis. In IEEE Workshop on Statistical Signal Processing, Bordeaux,. 2005 , Bordeaux, France, July 2005.
-
S. Gadat. Selection de variables pour la reconnaissance de formes. In GRETSI’05 On Image and Signal treatment, 2005, Louvain-La-Neuve, Belgique, September 2005.
-
S. Gadat. Reflected jump-diffusion for genes selection and classication of micro-array data. In Workshop on Statistical Analysis of Postgenomic Data, 2005 , Paris, France, April 2005
Chapter in Books
-
J. Bigot and S. Gadat. Chapter : Pattern recognition through large deformations of images, in book Pattern Recognition. Intech, 2010.
-
S. Gadat. Chapter : Feature Selection in high dimension for face Detection, in book Advances in Face Image Analysis . Techniques and Technologies, IGI – Global, 2009.